Equitable Medical Imaging

Muyinatu A. Lediju Bell

John C. Malone Associate Professor

Department of Electrical and Computer Engineering Department of Biomedical Engineering Department of Computer Science Department of Oncology

PHOTOACOUSTIC & ULTRASONIC SYSTEMS ENGINEERING LAB

*generated from light (PA) or sound (US) transmission

Improvements with Coherence-Based Beamforming

Coherence

Amplitude

 \rightarrow Reduced number of fluid breast masses recommended for biopsy from 43.3% to 13.3% → Promising for women with dense breast tissue

Bell *et al.* 2012 \rightarrow Improved image quality in overweight and obese patients

Pulse

Coherence-Based Photoacoustic Imaging

- Optical penetration depths limited by melanin absorbers, which cause acoustic clutter
- Leads to inherent skin tone bias with amplitude-based techniques

Intermediate Skin Tone

Coherence-based beamforming will reduce clutter in **patients with darker skin tones**

Dark Skin Tone Amplitude Coherence

Fernandes et al., Photoacoustics, 2023

Flexible Array for Photoacoustic Guided Surgery

Conforms to different body shapes X Unknown array shape

Bell, *Journal of Applied Physics*, 2020 Zhang *et al.* Biomedical Optics Express, 2023 Zhang *et al.* SPIE Photonics West, 2024

- Single signal processing technique enables more equitable medical imaging
- Diversity drives innovation
 - Datasets (e.g., overweight and obese, dense breasts, dark skin tones)
 - Personnel (e.g., 9 current PhD students: 1 BME, 7 ECE, 1 CS)
 - Background (e.g., MechE, BME, CS, Physics, ECE, Oncology)
- Ignore traditional disciplinary silos when innovating new ideas, yet introduce boundaries when grant writing, publishing, etc.

Acknowledgements

pulselab.jhu.edu

- Graduate Students:
 - Alycen Wiacek
 - Jiaxin Zhang
 - Eduardo González
 - Arun Nair
 - Michelle Graham
 - Mardava Gubbi
 - Ole Marius Hoel Rindal
 - Guilherme Fernandes
 - Ziwei Feng
 - Nethra Venkatayogi
 - Mahban Golijafari
 - Junior Arroyo
 - Junhao Zhang

• Undergraduate Students:

- Khaijat Kokumo
- Brooke Stephanian
- José Tmaná
- Rhea Rasquina

- Postdocs:
 - Arunima Sharma
 - Md Ashikuzzaman
- Collaborators:
 - Susan Harvey, MD
 - Kelly Fabrega-Foster, MD
 - Eniola Falomo, MD
 - Kelly Myers, MD
 - Emily Ambinder, MD
 - Lisa Mullen, MD
 - Kai Ding, PhD
 - Tiffany Fong, MD
 - Theo Pavan, PhD
 - Trac D. Tran, PhD

Follow @MuyinatuBell

NIH Trailblazer Award NIH K99/R00 EB018994 NIH R01 EB032960 NIH R01 EB032358

NSF CAREER Award ECCS 1751522 NSF EEC 1852155 NSF IIS 2014088

ORAL

8

Junior Faculty Enhancement Award

JHU Discovery Award JHU Catalyst Award

IEEE ULTRASONICS, FERROELECTRICS AND FREQUENCY CONTROL SOCIETY

Flexible Array Technology for PA-Guided Surgery

mLOC = maximum lag-one coherence within a region of

- **Conforms** to different surfaces
- X Unknown array shape
- X Unknown sound speed

Flexible Array Technology for PA-Guided Surgery

Detection of Mass Contents in Dense Breasts

- Difficult to distinguish fluid masses (benign) from solid masses (benign or malignant) with **DAS beamforming**
- ightarrow High false positive rates
- ightarrow Biopsies, aspiration, follow-up
- ightarrow Patient anxiety

Promising Solution: Coherence-Based Beamforming

- →Reduced number of fluid masses recommended for biopsy from 43.3% to 13.3%
- \rightarrow Related LOC metric promising for dense breast tissue

Wiacek *et al.*, Ultrasound in Medicine & Biology, 2020 Wiacek *et al.*, Ultrasound in Medicine & Biology, 2023 Sharma *et al.*, IEEE TUFFC, 2024

(funded by NIH R01 EB032960)

Acknowledgements

pulselab.jhu.edu

Follow @MuyinatuBell

NIH Trailblazer Award NIH K99/R00 EB018994 NIH R01 EB032960 NIH R01 EB032358

NSF CAREER Award

ECCS 1751522

NSF EEC 1852155

NSF IIS 2014088

ORAU Junior Faculty

Enhancement Award

JHU Discovery Award JHU Catalyst Award

NVIDIA

Cutting Edge Surgical, Inc.

Improved Image Quality in Overweight & Obese Patients

liver heart fetus vessels Amplitude (Delay & Sum) **Carotid Artery** Arterioles Coherence (SLSC*) Bell *et al.* 2012 Jakovljevic et al. 2013 Kakkad et al. 2015 Dahl et al. 2011

*SLSC = Short-Lag Spatial Coherence, **Patented in 2016**

Applications in Deep Learning

- Photoacoustic coherence functions were learned to provide SLSC images for a diversity of skin tones¹
- Reduces clutter and skin tone bias present in traditional amplitude-based images²

²Fernandes *et al. Photoacoustics*, 2023

Overfitting detection with Gaussian input³

³Zhang *et al. IEEE IUS 2022*

16

www.creatis.insa-lyon.fr/Challenge/IEEE_IUS_2016/download

- First to train DNNs with simulated lung ultrasound data
- Accuracy better than training on *in vivo* data when applied to *in vivo* patient images
- Assists with identifying and monitoring COVID-19 and other lung diseases

*Data, code, and segmentation labels are public: https://gitlab.com/pulselab/covid19

L Zhao, T Fong, MAL Bell, *Nature Communications Medicine*, 2024 (funded by NIH Trailblazer Supplement NIH R21 EB025621-03S)

In Vivo Breast Cyst Detection with Deep Learning

Nair, *et al.* "Deep learning to obtain simultaneous image and segmentation outputs from a single input of raw ultrasound channel data." *IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control*, 2020

Largest database of ultrasound channel data!

CUBDL Contributors

Lead Organizer

J Huang

CUBDL Co-Organizers

RJG van Sloun

YC Eldar

Post-CUBDL

20

A Wiacek

- **CUBDL Winners:** S Goudarzi, S Rothlubbers, A Asif, K Eickel, H Rivaz, D Sinden, H Strohm
- CUBDL Data Contributors
 - A Wiacek, J Huang, MAL Bell, E Oluyemi, and E Ambinder (Johns Hopkins University, **USA**)
 - Ping Gong and Shigao Chen (Mayo Clinic, **USA**) ٠
 - Alessandro Ramalli and Piero Tortoli (University of Florence, **Italy**) ٠
 - Ben Luijten and Massimo Mischi (Eindhoven University of Technology, **The Netherlands**)
 - Ole Marius Hoel Rindal (University of Oslo, **Norway**) ٠
 - Vincent Perrot and Hervé Liebgott (CREATIS, INSA, University of Lyon, France) •
 - Xi Zhang and Jianwen Luo (Tsinghua University, **China**)

M Mischi

Sponsors

cubdl.jhu.edu