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Introduction  
Recent advancement in the development of artificial intelligence (AI) systems has been rapid, and the role 

of these systems in the economy continues to grow. While AI adoption is already commonplace in many 

aspects of daily life, much of its potential for broader economic transformation has not yet been realized. 

Moreover, there remains vast uncertainty about how AI technology will develop, where it will be adopted, 

and how it will impact the economy and society. A broad economic framework for understanding AI is 

necessary, because only by understanding the incentives around a technology’s development and adoption 

can one reasonably predict its uses in the future and the impacts it may have. And, since the impacts of 

technological change are not a foregone conclusion, a future-oriented economic framework can inform 

deliberate policy choices at the technology’s onset, increasing those policies’ eventual impact. Thoughtful 

policy, informed by an evidence-based economic framework, can help to ensure that AI’s economic 

benefits are felt broadly and its risks to workers and others are addressed. 

In this year’s Economic Report of the President (ERP), CEA provided such an economic framework. It 

took a detailed look at the key features of AI technology, and it related those features to core economic 

concepts that might help predict future impacts. The report then used those concepts to motivate a 

thorough discussion of how the government can prepare its institutions and laws for AI, including by 

updating its existing regulations, adapting existing safety net programs, and considering potential new 

programs such as expanded worker assistance. CEA also developed a novel empirical methodology to 

analyze the potential labor market impacts of AI, as directed by Executive Order 14110 (White House 

2023). In this companion report, CEA continues its analysis of potential labor market impacts, providing 

a number of new results and other information that could not be included in the ERP because of format 

and length limitations. CEA’s ongoing analysis continues to inform the Biden-Harris Administration’s 

comprehensive effort to seize AI’s opportunities and manage its risks. 

CEA’s methodology draws on several economic frameworks that have been used to analyze technological 

changes in recent decades, especially the task-based polarization framework that predicts how some 

occupations are complemented and others substituted by previous computer technologies based on the 

tasks they perform (Autor, Levy, and Murnane 2003). CEA’s empirical framework follows those of other 

https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://academic.oup.com/qje/article/118/4/1279/1925105


researchers that have developed similar measures (e.g., Frey and Osborne 2017; Felten, Raj, and Seamans 

2021; Brynjolfsson, Mitchell, and Rock 2018; Ellingrud et al. 2023; Eloundou et al. 2023; Kochhar 2023) 

and it provides similar conclusions about occupational exposure to those alternatives. However, CEA’s 

analysis goes further than many of these previous analyses, because it develops a measure of AI-related 

job performance requirements that—in conjunction with its measure of overall AI exposure—may 

identify occupations and workers who could be particularly vulnerable to displacement or other negative 

economic outcomes. 

In this report, CEA furthers that analysis, finding new evidence to support the assertion that AI-related job 

performance requirements might accurately identify the workers who are most vulnerable to negative 

economic outcomes from AI. Based on these findings, CEA classifies as “potentially AI-vulnerable” the 

subset of workers who have both a high degree of AI exposure along with low AI-related job performance 

requirements.1 In particular, CEA bases this classification on evidence that: 

• Occupations identified as potentially AI-vulnerable are already growing more slowly than those 

that are also exposed to AI, but have higher job performance requirements;  

• Workers’ job transition patterns are gradually changing in ways that suggest declining demand 

for potentially AI-vulnerable occupations; and, 

• Many potentially AI-vulnerable occupations have changed comparatively little in recent years, in 

clear contrast to an overall pattern of occupations’ job performance requirements increasing over 

time. 

CEA cannot directly observe whether changes in performance requirements are adaptations to 

technology, either in response to the rise of AI or to previous technologies like computers and the 

internet. More generally, CEA’s classification of AI-vulnerable occupations depends on assumptions 

about the types of future adaptations that may take place in the future. However, the results suggest that 

even as many workers’ existing jobs may adapt substantially to accommodate AI, the occupations that 

currently appear most vulnerable also do not appear to be adapting, even as they face declining demand 

and therefore increased potential for workers in those occupations to be displaced. 

In contrast, CEA finds evidence that is consistent with increasing demand for AI-exposed workers with 

high job performance requirements. Employment in these occupations is growing faster than average, and 

workers are transitioning into them. Again, CEA cannot distinguish to what degree these patterns reflect 

 
1 Throughout the report, CEA also uses the more general terms “AI-vulnerable” and “vulnerable” to refer to this 
same set of occupations that are potentially vulnerable to AI as a result of their high degree of AI exposure and low 
AI-related job performance requirements. 

https://www.sciencedirect.com/science/article/abs/pii/S0040162516302244
https://onlinelibrary.wiley.com/doi/full/10.1002/smj.3286
https://onlinelibrary.wiley.com/doi/full/10.1002/smj.3286
https://www.aeaweb.org/articles?id=10.1257/pandp.20181019
https://www.mckinsey.com/mgi/our-research/generative-ai-and-the-future-of-work-in-america
https://arxiv.org/abs/2303.10130
https://www.pewresearch.org/social-trends/2023/07/26/which-u-s-workers-are-more-exposed-to-ai-on-their-jobs/


the impacts of AI above and beyond the continued effects of previous technologies—it may still be too 

soon to observe the direction of AI’s impact on labor demand for these workers. A comparison of CEA’s 

measure to previous task-based frameworks suggests that AI exposure and AI-related job performance 

requirements correlate substantially with measures of how computerization has impacted workers in the 

past. This makes it particularly difficult to assess the extent to which AI’s impacts are meaningfully 

distinct from those of previous technologies. However, CEA’s finding of increasing demand for AI-

exposed occupations with high performance requirements is consistent with complementary usage of 

technology. If this pattern of demand continues, then workers who already perform complex and difficult 

tasks may also be more likely to benefit from AI adoption in the future. 

The potential benefits from AI are substantial. Many workers are likely to benefit from use of the 

technology, and productivity gains could substantially improve economic wellbeing overall. Nonetheless, 

a subset of workers may be at risk of displacement, declining earnings, or other negative economic 

outcomes in response to the technology’s adoption.2 Identifying such vulnerable workers in advance—as 

CEA’s measure attempts to do—may help to ensure that policies designed to help them transition or 

otherwise adapt in response to AI are efficiently targeted and executed. 

Although many new empirical findings are contained in this report, the policy implications of these 

additional analyses differ little from those previously discussed in the ERP. Readers who are interested in 

a more thorough discussion of policy, or in the broader economic framework through which CEA 

evaluates AI’s potential, are encouraged to review the detailed discussion therein. Instead, this report 

focuses on providing the necessary information, guidance, context, and transparency to permit others to 

assess CEA’s empirical framework, and to ensure that future evaluations of its effectiveness are feasible 

and insightful. 

The report proceeds as follows. Section 1 provides a more detailed description of the construction of 

CEA’s AI exposure measure, and the basic principles motivating its approach. Section 2 provides the core 

results on predicted worker exposure to AI. Several of these results are reproduced from the ERP, but this 

section also includes new analyses on worker age, geography, and union status. Section 3 provides a 

series of robustness checks and comparative analyses, including a comparison to several measures of AI 

exposure produced by other researchers, as well as a comparison to the task-based measures of Autor and 

 
2 Another important potential risk to workers from AI is declining job quality due to changes in working conditions. 
Although a high degree of AI exposure may be predictive of this risk, changes to working conditions can harm 
workers regardless of whether a technology is complementing or substituting their work. Therefore, CEA’s more 
detailed measure of AI-vulnerable occupations does not predict potential harm from changing working conditions. 
Employer adoption of principles and best practices—such as those recently released by the Department of Labor 
(2024)—can help to minimize these harms to workers. 

https://www.dol.gov/general/AI-Principles


Dorn (2013), commonly used in the literature on labor market polarization. Section 4 provides a variety of 

analyses of trends over time that many provide insights into how AI could affect different workers 

differently. This includes new analysis on how job switching patterns and occupational tasks have 

changed over time. Section 5 concludes the report. Finally, an included Appendix provides several 

additional tables that may help with interpretation of the report’s main results. 

Section 1: Motivation and Measure Construction 
Sometimes, it can be easy to predict how a new specialized technology can be used to automate specific 

tasks and affect labor markets. For example, the Luddites foresaw that new textile machinery such as the 

power loom would negatively impact wages and labor standards among skilled textile workers, and they 

destroyed that machinery in response (Thompson 2017). The actions of the Luddites failed to prevent 

technology adoption, and many of the Luddites’ predictions did come to pass. Predicting some immediate 

labor market impacts of some specific technologies can be straightforward. 

However, predicting the labor market impacts of general-purpose technologies like AI is challenging. 

General-purpose technologies are distinguished not only by the breadth of their potential applications, but 

by the way in which they create new opportunities for improvements in other sectors (Bresnahan and 

Trajtenberg 1995). For example, underpinning the adoption of technologies like the power loom was the 

steam engine, a general-purpose technology that could be adapted to many different purposes throughout 

the economy. Even as some use cases like the power loom negatively impacted some skilled craftspeople, 

a major effect of the steam engine was to draw farm workers into factory labor, and this likely increased 

the overall demand for skill in the economy (de Pleijt, Nuvolari, and Weisdorf 2020). Additionally, the 

new opportunities created by general-purpose technologies may lead them to be “augmentation 

innovations,” increasing labor demand through new forms of work (Autor et al. 2024). The impacts of 

new forms of work may be particularly difficult to assess in advance. 

Ideally, researchers would be able to use economic data to precisely identify a single technology’s 

impacts in isolation from other factors. However, measurement issues mean that this is usually not 

possible, even after the fact.3 So, economists have traditionally relied on a series of broad frameworks, 

using a mixture of theory and available empirical evidence to assess the labor market impacts of a 

technology. These frameworks look at changes in patterns of economic activity across workers over time, 

 
3 Often, researchers cannot directly measure the use of the technology. In many other cases, they cannot disentangle 
its use from that of other technologies that are adopted at the same time, or from other economic forces that might 
affect the decision to adopt. On balance, economic evidence can be suggestive, but attempts to neatly identify the 
overall labor market impacts of a particular technology are comparatively rare, because it is simply too difficult to 
rule out other explanations (e.g., DiNardo and Pischke 1997). 

https://www.aeaweb.org/articles?id=10.1257/aer.103.5.1553
https://www.smithsonianmag.com/innovation/when-robots-take-jobs-remember-luddites-180961423/
https://www.sciencedirect.com/science/article/pii/030440769401598T
https://www.sciencedirect.com/science/article/pii/030440769401598T
https://academic.oup.com/jeea/article-abstract/18/2/829/5398135
https://academic.oup.com/qje/advance-article/doi/10.1093/qje/qjae008/7630187
https://www.jstor.org/stable/2951283


and then correspond those changes to salient characteristics of workers. When these patterns align with an 

underlying characterization of how a technology works, and with the timing of that technology’s 

adoption, it suggests that the technology played a role in bringing the changes about. A useful framework 

not only fits the data well, but it also makes assumptions that succinctly characterize the relevant 

economic relationships. 

In recent decades, economic analyses of technological change have been characterized by multiple such 

influential frameworks.4 The first is the framework of skill-biased technical change (SBTC). The typical 

SBTC implementation considers changing patterns of earnings across the educational distribution, in 

effect using education as a proxy for skills whose value changes in response to technological 

advancement (e.g., Goldin and Katz 2007; Autor, Goldin, and Katz 2020). This framework suggests that 

growing education wage premia over time—especially during the latter part of the 20th century—could be 

a result of new technologies that increase the demand for educated workers faster than labor supply can 

keep up. The second is a task-based framework, which considers workers in different occupations based 

on simplified measures of those occupations’ task content (e.g., Autor, Levy, and Murnane 2003; Autor 

and Dorn 2013). This framework relates increasing inequality and job polarization following the rise of 

the personal computer to that technology’s ability to complement certain abstract tasks, while substituting 

for human labor in many routine tasks that were commonly found in middle-class jobs. Finally, CEA 

considers a recent framework based on the notion of new task formation, which builds on the previous 

task-based framework, but focuses on the way in which new tasks can be created and performed by 

workers even as old tasks may be fully automated (e.g., Acemoglu and Restrepo 2018). This framework 

has been used to explain the rise of new forms of work (Autor et al. 2022), and recently to make 

additional predictions about AI’s potential productivity impacts (Acemoglu 2024). In practice, these 

frameworks are not mutually exclusive; they provide different useful insights that can be applied to 

different contexts, and researchers have sometimes incorporated features from multiple frameworks to 

explain specific circumstances (e.g., Autor, Katz, and Kearney 2008). And, although each framework has 

typically been developed to explain impacts of previous technologies such as the personal computer, they 

may also have relevance for the future if their underlying assumptions continue to hold. 

CEA’s measure of AI exposure—and its measure of vulnerable exposed occupations—reflect an 

underlying model of AI’s effects. This model is built on the assumptions of the frameworks that have 

come before it, and can be seen as a refinement of those models. In particular, CEA’s analysis relies on an 

idea that is common to all task-based frameworks: workers’ likely exposure to new technologies is 

 
4 CEA provides additional discussion of these frameworks and their implications in the ERP. 

https://www.nber.org/system/files/working_papers/w12984/w12984.pdf
https://www.nber.org/system/files/working_papers/w26705/w26705.pdf
https://academic.oup.com/qje/article/118/4/1279/1925105
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https://www.aeaweb.org/articles?id=10.1257/aer.20160696
https://www.nber.org/papers/w30389
https://shapingwork.mit.edu/research/the-simple-macroeconomics-of-ai/
https://direct.mit.edu/rest/article/90/2/300/57725/Trends-in-U-S-Wage-Inequality-Revising-the


associated with the specific tasks and activities that they perform, and therefore with their occupation. 

This assumption has been widely adopted by other researchers developing measures of AI exposure in 

recent literature (e.g., Frey and Osborne 2017; Felten, Raj, and Seamans 2021; Brynjolfsson, Mitchell, 

and Rock 2018; Ellingrud et al. 2023). The premise of the assumption is that AI may be used to automate 

or augment performance of certain tasks, and that those tasks are currently performed by workers in 

specific occupations. And, the above measures are alike in that they measure the task content of 

occupations using information provided by the Department of Labor’s O*NET database, based on a 

mixture of workers surveys and analyst assessment. However, the papers make different assumptions 

about how best to measure AI exposure using the various types of occupational content information 

available. 

Precise derivations of CEA’s measure of AI exposure, and its measure of vulnerability based on AI-

related job performance requirements can be found in Appendix A. However, among existing models of 

AI exposure, CEA follows most closely the specific measurement assumptions made by Kochhar (2023). 

In particular, CEA follows this prior research in making use of information about Work Activities, a 

rough proxy for tasks which are a list of 41 distinct activities about which individuals in all occupations 

are asked.5 Of these activities, CEA also follows prior research in identifying 16 Work Activities as 

having high exposure to AI: the full list of these activities is included in Appendix Table A1. The premise 

of this assumption is that these are the activities where use of AI may be most feasible, given the present 

understanding of the technology’s current and expected capabilities.6 Finally, CEA adopts the idea that 

the potential exposure of an occupation to AI is captured by the importance to the job of the activities that 

are exposed to AI, in comparison with all other activities. 

However, CEA’s measure also differs from previous measures in two key respects. First, CEA differs 

from Kochhar (2023) and other measures in how it aggregates information about different activities to 

construct its overall AI exposure index. In particular, CEA standardizes all reported activity importance 

scores for each activity across occupations, and it defines its relative measure as the difference in average 

 
5 Another measure of occupational content in O*NET that has been used for this type of analysis is Tasks, which are 
uniquely defined for each occupation. Brynjolfsson, Mitchell, and Rock (2018) use this measure of occupational 
content in characterizing occupational exposure, and then perform textual analysis to convert the task measure into a 
measure of occupational exposure. In this report, CEA uses the terms activity and task flexibly, although it has not 
conducted an analysis of Tasks as measured in O*NET. 
6 AI technology has changed over time, and some Work Activities that are considered exposed based on its current 
and expected future capabilities may not have been exposed to previous AI implementations. Throughout the report, 
CEA measures AI exposure and AI-related job performance requirements using the same set of 16 exposed Work 
Activities, regardless of whether it is predicting future occupational changes or analyzing past ones. 

https://www.sciencedirect.com/science/article/abs/pii/S0040162516302244
https://onlinelibrary.wiley.com/doi/full/10.1002/smj.3286
https://www.aeaweb.org/articles?id=10.1257/pandp.20181019
https://www.aeaweb.org/articles?id=10.1257/pandp.20181019
https://www.mckinsey.com/mgi/our-research/generative-ai-and-the-future-of-work-in-america
https://www.pewresearch.org/social-trends/2023/07/26/which-u-s-workers-are-more-exposed-to-ai-on-their-jobs/
https://www.pewresearch.org/social-trends/2023/07/26/which-u-s-workers-are-more-exposed-to-ai-on-their-jobs/
https://www.aeaweb.org/articles?id=10.1257/pandp.20181019


standardized importance between exposed and non-exposed activities.7 One reason for these 

methodological changes is that different activities have different average importance in the raw O*NET 

data, and so standardizing ensures that all work activities are weighted equally in the resulting index. The 

normalization also improves interpretability, because a unit increase in the importance of a particular 

activity or set of activities can be interpreted as a one standard deviation change in importance, relative to 

the distribution in the overall economy. While these methodological changes are helpful to specific pieces 

of CEA’s subsequent analysis, they have little impact on the extent or composition of measured AI 

exposure in comparison to Kochhar. Analysis shown in Appendix B reflects the strong relationship 

between the two measures: the correlation between CEA’s measure and the measure underlying Kochhar 

is 0.95. The analysis also compares CEA’s AI exposure measure to several other measures in recent 

literature, and finds that all these measures are positively correlated at the occupation level. 

CEA’s other primary methodological contribution is to provide an extension of its measure of AI 

exposure that considers the potential for AI to complement or substitute for human performance of an 

occupation. Although CEA cannot predict the specific ways in which jobs and workers will adapt to the 

technology, the measure is intended to identify workers who are potentially most vulnerable to negative 

outcomes related to increased AI adoption. CEA’s measure, referred to as AI-related job performance 

requirements, uses information from a separate O*NET question about the degree of complexity or 

difficulty to which each work activity must be performed in order to perform one’s overall job.8 The 

underlying assumption guiding this measure is that complexity and difficulty are closely related to costs 

of adoption. If it is more costly and difficult for AI to fully substitute for human performance of an 

activity, then using AI to complement performance of that activity may be more feasible or cost effective 

than using AI to fully automate the activity. As with the measure of AI exposure, CEA’s measure of AI-

related job performance requirements is based on an average of standardized values across all AI-exposed 

activities. 

Threshold Determination 
As outlined above, CEA constructs two basic measures for each occupation: an AI exposure score, and a 

score representing the degree of AI-related performance requirements. Along each of these two 

dimensions, CEA defines threshold levels of exposure and performance requirements, so that the full set 

of occupations can be neatly divided into three groups: AI-exposed with high AI-related performance 

 
7 The O*NET data do not provide detailed information on the distribution of survey responses, so the reported 
importance of a work activity to an occupation is the mean value provided by survey respondents or analysts for that 
occupation, recorded on a 1 to 5 scale of increasing importance. 
8 The measure of AI-related job performance requirements is based on the degree of complexity or difficulty to 
which the 16 AI-exposed Work Activities must be performed for each occupation. Details of measure construction 
are provided in Appendix A. 



requirements, AI-exposed with low AI-related performance requirements, and not highly AI-exposed. 

Specifically, the threshold exposure score is based on the 75th percentile of occupational exposure, 

unweighted by employment or hours, which is the same threshold used by Pew Research in its analysis 

(Kochhar 2023). For performance requirements, CEA’s threshold for delineating high/low AI-related 

performance requirements is the population median, weighted by aggregate hours in the 2022 American 

Community Survey (Ruggles et al. 2024). 

 

Figure 1 graphs the full distribution of CEA’s AI exposure measure, ranked across occupations. Because 

of CEA’s standardization procedure, the measure has the following interpretation: it is the difference 

between the average importance of AI-exposed activities and that of all other activities, where the 

importance of each activity is measured in standard deviations relative to the average in the workforce. So, 

for example, a value of 0 corresponds to an occupation in which AI-exposed work activities and all other 

activities are, on average, equally important to the job. The dotted line represents the relative importance 

threshold used in CEA’s analysis, corresponding to the 75th percentile of occupations, unweighted by 

employment. As shown in the figure, 20 percent of overall employment is in occupations above the 

threshold. At this threshold, highly AI-exposed work activities are, on average, about a quarter of a standard 

deviation more important to the performance of an occupation than the average of other activities. 

https://www.pewresearch.org/social-trends/2023/07/26/which-u-s-workers-are-more-exposed-to-ai-on-their-jobs/
https://usa.ipums.org/usa/


One concern with using any threshold-based measure such as CEA’s is that the overall interpretation of 

results may be highly sensitive to the chosen threshold. Figure 1 illustrates a particular reason why this 

concern may be salient: the distribution of relative AI-exposed activity performance across the population 

is smooth, and no obvious discontinuity in exposure scores is apparent. So, for any chosen threshold, the 

difference in AI exposure between occupations immediately above and below the threshold is guaranteed 

to be small. And, changing the chosen exposure threshold mechanically alters the fraction of workers who 

are considered affected, as well as the difference in exposure between groups. On the other hand, using 

discrete thresholds allows for intuitive comparisons across different demographic and socioeconomic 

groups that may be very useful. CEA has conducted a sensitivity analysis of its selected threshold to 

determine the extent to which some of its primary findings might be driven by its choice of threshold, and 

has found that broad patterns of economic and demographic exposure are largely replicated when one 

chooses other thresholds within a sensible range. Portions of this analysis are included in Appendix C. So, 

while it is important to treat all results that use a binary threshold with caution, CEA believes that the basic 

conclusions of its analysis are robust to its use of binary threshold. 

Relationship Between AI Exposure and Types of Tasks 
As discussed above, the task-based polarization framework has been commonly used to assess the 

impacts of technological change during the era of widespread computerization. Implementations of this 

model assess occupations based on measurements of their task content along key characteristic 

dimensions. Typically, these are measures of routine, cognitive (or abstract), and manual task content 

(e.g., Autor, Levy, and Murnane 2003; Autor and Dorn 2013). AI depends on computerization, and in 

many cases AI adoption involves augmenting existing computerized systems with prediction, automated 

content generation, or other features. Therefore, it is plausible that an existing task-based framework, or 

refinements to one, may also be effective in characterizing the future labor market impacts of AI. 

Before machine learning approaches were incorporated into automated systems, the extent of 

computerized automation was often limited by the need for explicit rules and codified procedures (Autor 

2014). Yet, many tasks make use of tacit knowledge that is not easily codified (Polanyi 1966), and this 

made these tasks difficult to automate. So, modern AI systems based on machine learning—including 

generative AI systems—broaden the set of tasks that computers can perform by reducing the need for 

explicit, rules-based approaches. In the typical task-based framework, computerized automation has been 

characterized as capable of substituting for human performance of many routine tasks, which are likely to 

be codifiable (e.g., Autor and Dorn 2013). And, computerization has been suggested to complement 

humans in tasks which are abstract in nature. Finally, the framework suggests that workers whose tasks 

were sufficiently non-routine and not abstract might see their work comparatively unaffected by computer 

https://academic.oup.com/qje/article/118/4/1279/1925105
https://www.aeaweb.org/articles?id=10.1257/aer.103.5.1553
https://www.nber.org/papers/w20485
https://www.nber.org/papers/w20485
https://books.google.com/books/about/The_Tacit_Dimension.html?id=jwLXAAAAMAAJ
https://www.aeaweb.org/articles?id=10.1257/aer.103.5.1553


technology. If AI extends computer-led automation in ways that yield similar patterns of complementarity 

and substitution, then the impacts of AI may in part be predictable based on the relationship between its 

capabilities and these existing measures of occupational task content.  

 

Using an occupational crosswalk provided by Autor and Dorn (2013), CEA has constructed a comparison 

between the measures of task content that they use to implement their task-based framework and CEA’s 

measures of AI exposure and AI-related performance requirements. Table 1 shows the correlations 

between these measures across occupations. Several noteworthy findings emerge. First, higher AI 

exposure is moderately associated with more routine task content. This is consistent with an interpretation 

that AI could be used in part to automate similar types of tasks as previous computer technologies. 

Secondly, higher abstract task content corresponds fairly strongly to CEA’s measure of AI-related 

performance requirements. This suggests that workers who are currently observed to have high AI-related 

job performance requirements may have benefitted from complementarity with computer technologies in 

the past. And, if previous patterns hold as AI extends the scope of computer-led automation, then jobs 

with high AI exposure and high AI-related performance requirements could be associated with greater 

potential for complementarity in the future as well. Finally, both high AI exposure and high AI 

performance requirements are weakly associated with less manual task content. 

AI exposure measure AI Exposure

AI-Related 
Performance 
Requirements

AI Exposure 1.00 0.28
Performance Requirements 0.28 1.00
Autor Dorn (2013) Abstract 0.06 0.61
Autor Dorn (2013) Routine 0.29 0.00
Autor Dorn (2013) Manual -0.09 -0.08

Council of Economic Advisers
Sources: American Community Survey; Department of Labor; Autor and Dorn (2013); CEA calculations.
Note: All measures are linked to 1990 occupational codes as in Autor and Dorn (2013).
As of May 8, 2024 at 6:00pm.

Table 1. Correlation Between AI Exposure and Measures of
Occupational Task Content

https://www.aeaweb.org/articles?id=10.1257/aer.103.5.1553


 

One concern with a correlation analysis is that a positive correlation could be primarily a result of 

associations among occupations that are not very exposed to AI. CEA’s threshold-based analysis 

considers only a fraction of occupations to be highly AI-exposed, and even fewer of those occupations to 

have the low AI-related performance requirements that might make them particularly vulnerable. So, it 

may be more useful to know whether these same relationships hold when considering only this subset of 

occupations. In Figure 2, CEA graphs distributional parameters for standardized versions of the three task 

content measures, across each of its three basic occupational classifications. The results confirm similar 

relationships to those found in the initial correlation table. Workers in occupations who are highly AI-

exposed, but who have low AI-related performance requirements have substantially lower abstract task 

content in their work than others, while AI-exposed workers with high performance requirements have 

comparatively high levels of such content. The relationships along the other two dimensions are less 

strong, with wider within-category distributions. However, workers in both categories of AI-exposed 

employment also have, on average, somewhat more routineness to their tasks that other workers. 

Overall, these results suggest that CEA’s measure of AI exposure is substantively linked to the notions of 

task content developed by earlier task-based frameworks. The previous effects of computerization have 



been argued to be especially strong among workers who perform routine work that is not manual in nature 

(e.g., Autor and Dorn 2013); as Figure 2 shows, many of the workers whom CEA classifies as most 

potentially AI-vulnerable do appear to perform relatively routinized work. However, the implications of 

this analysis are perhaps more important to understanding CEA’s measure of AI-related performance 

requirements. In developing their measure, Autor and Dorn (2013) suggested that abstractness was 

associated with human-computer complementarity because these tasks were largely “creative, problem-

solving, and coordination tasks … for whom data analysis is an input into production.” If AI continues to 

complement these tasks in a similar fashion as previous computer technologies, then the lack of such 

tasks among AI-exposed workers with low performance requirements supports CEA’s assumption that 

those workers could be more vulnerable to AI-related displacement. Like all forward-looking predictions 

of labor market impacts, this interpretation is difficult to thoroughly evaluate until widespread AI 

adoption has taken place. However, it does suggest potential areas of focus in identifying and targeting 

the workers who may be most vulnerable to negative economic impacts from AI. 

Predictive Scope 
With the basic assumptions outlined above, CEA is able to provide numerous predictions about the 

potential degree of AI’s impact, as well as its potential to disproportionately impact particular 

demographic and economic groups. These predictions are made on the premise that the workers who 

CEA’s measure classifies as exposed to AI are those who perform the tasks that are most likely to change 

as a result of the technology. Such predictions, like the underlying framework, are made using the best 

information available at the time of their inception. However, as with many predictive AI models that 

incorporate continual feedback to improve their effectiveness, predictive economic frameworks generally 

benefit from continual evaluation. CEA anticipates that as new data become available, this framework and 

others like it will undergo a similar process of review and refinement. 

One thing that this framework does not do, and is not designed to do, is make predictions about the future 

extent of employment in the economy as a whole. The reason for this limitation is found most clearly in 

the literature on new task formation (e.g., Acemoglu and Restrepo 2019). Task-based measures of AI 

exposure predict which workers are most likely to be exposed to AI in their work—they may also provide 

limited suggestive evidence of which activities could be most prone to labor substitution through 

automation. However, task-based measures do not predict what new tasks may form in the future, or 

whether they will be performed by workers in existing occupations or in newly-created ones. Similarly, 

https://www.aeaweb.org/articles?id=10.1257/aer.103.5.1553
https://www.aeaweb.org/articles?id=10.1257/aer.103.5.1553
https://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.33.2.3


task-based measures provide limited information about how existing tasks might change over time in 

response to new technology, or how occupations might adapt to these changes.9 

 

In response to questions about the future extent of employment, the best evidence comes from the 

historical record. Economists and others have predicted for centuries that technological change might lead 

to widespread “technological unemployment” or drastically reduced hours of work. Yet, as Figure 3 

demonstrates, measures of employment such as the working-age employment-population ratio and 

average hours of work show little evidence of decline in recent decades. In fact, the employment rate 

remains close to long-term highs, matched only by a period in the late 1990s in which technological 

change and productivity growth was also rapid, commonly associated with the previous general-purpose 

technologies of the personal computer and internet adoption. Even though new technologies of the past 

may have displaced some workers from their previous jobs, it failed to reduce employment overall. 

 
9 These limitations of task-based frameworks affect their ability to predict outcomes not only for employment as a 
whole, but also for individual workers and occupations. However, these limits pose a particular challenge to 
predicting macroeconomic impacts because new occupations are so prevalent. Autor et al. (2024) estimate that 
roughly 60 percent of work is performed in job titles that did not exist in 1940.  

https://academic.oup.com/qje/advance-article/doi/10.1093/qje/qjae008/7630187


Similarly, the increased wealth brought about by technological change has not led workers to 

substantially reduce their hours or employment. 

A second thing that CEA’s framework does not do is predict when AI-related impacts may occur. 

Adopting a new technology often involves complicated changes to production processes, and these 

changes take time to implement. Additionally, constraints faced in different phases of an overall process 

can prevent a new technology from being adopted or fully utilized for long periods. Later in this report, 

CEA conducts a limited analysis of changes in occupations and tasks over time, providing some evidence 

that changes have already occurred that could plausibly be the result of existing AI uses, or of other 

computer-related automation. Conversely, other research has found that process innovations resulting 

from adoption of AI may not yet be occurring (Babina et al. 2024). Several analysts and researchers have 

suggested that sizeable productivity improvements from AI could begin within this decade (see Acemoglu 

2024 for an overview); labor market impacts could occur on a similar time frame. However, the basic 

framework that CEA provides cannot provide any insights into this timing. 

Section 2: Differences in Exposure by Job and Worker Characteristics 
CEA’s measures of AI exposure and AI-related job performance requirements predict future AI exposure 

and potential vulnerability at the occupation level. Using these measures, one can straightforwardly 

observe and rank the potential exposure of any single occupation, or of any group of occupations. By 

linking this measure back to survey microdata, CEA is also able to provide tabulations regarding the 

demographic and economic characteristics of workers who are exposed to AI. This section of the report 

provides the results of this exercise. Except as otherwise noted, all analyses use the 2022 American 

Community Survey Public-Use microdata, and examine only the characteristics of full-time, full-year 

workers, weighted based on the total aggregate hours of those workers. 

https://www.sciencedirect.com/science/article/pii/S0304405X2300185X
https://shapingwork.mit.edu/research/the-simple-macroeconomics-of-ai/
https://shapingwork.mit.edu/research/the-simple-macroeconomics-of-ai/


 

Table 2 provides a list of average occupation-level AI exposure and AI-related performance requirements 

by major SOC occupational group. Architecture and engineering occupations are the most exposed in 

CEA’s measure; the score of 0.44 implies that AI-exposed activities are nearly half a standard deviation 

(in comparison to the population) more important to these occupations than other activities are. Notably, 

the top three most exposed occupational groups also have relatively high AI-related job performance 

requirements, suggesting that workers in these occupations may be less vulnerable than others. For 

example, the performance requirements score for architecture and engineering occupations of 0.81 

implies that on average, AI-exposed activities of these workers must be performed with a degree of 

difficulty or complexity that is more than four fifths of a standard deviation above the population mean. 

For this reason, although 90 percent of workers in this occupation group meet CEA’s threshold for high 

AI exposure, only 4 percent of these workers are classified as also having low performance requirements, 

and therefore being potentially vulnerable. In contrast, workers who have high AI exposure but low AI-

related job performance requirements are comparatively vulnerable. Table 2 suggests that Office and 

administrative support and Transportation occupations are the groups in which potentially AI-vulnerable 

workers are most concentrated. However, most occupational groups have some workers who are 

classified as potentially vulnerable. Finally, note that many of the least AI-exposed occupations are 

manual in nature, and they also have very low AI-related job performance requirements. Because AI-



exposed activities are relatively less important to these jobs, they are not classified as potentially 

vulnerable. 

In Appendix Tables D1 and D2, CEA has also provided a list of the top 25 most AI-exposed occupations 

on this measure, as well as the bottom 25 least exposed occupations, and it has included the exposure and 

performance requirements scores for each. Although these rankings should be used with some caution, 

because exact rankings are likely to be highly sensitive to minor definitional choices, characteristic 

differences become apparent when comparing the two lists. Regardless of their level of performance 

requirements, highly AI-exposed occupations often involve tasks that have been familiar targets for 

computerization or automation in recent decades. Many highly AI-exposed occupations require significant 

amounts of information processing, as well as forms of content generation that might be automated in part 

or in full by generative AI. The core functions of several listed occupations, such as “Medical 

transcriptionists” and “Switchboard operators, including answering service” have already been targeted by 

commercial AI applications. In contrast, many of the occupations that are least exposed are heavily reliant 

on interpersonal interactions. In several cases, such as “Clergy” or “Dancers,” the perceived value of outputs 

may be closely tied to their production by a human. In other cases, occupations involve non-routine manual 

activities that may simply be especially resistant to routinized automation. 

Differences Across the Earnings Distribution 
 



 

Exposure to AI varies considerably across the earnings distribution. Figure 4 groups occupations into 

deciles based on workers’ average earnings, and then reports the percentage of workers within each decile 

who are employed in an AI-exposed occupation. The highest percentage of employment in highly AI-

exposed occupations occurs in the lower-middle portion of the occupational earnings distribution. In the 

third and fourth occupational earnings deciles, more than a third of workers are exposed to AI. However, 

individuals in the top two deciles are also comparatively likely to have high AI exposure.  

Figure 4 also demonstrates that differences in AI-related performance requirements across the earnings 

distribution are substantial. While exposed workers in the lower-earning deciles have lower performance 

requirements, workers in higher-earning AI-exposed occupations have, on average, much higher AI-

related performance requirements than workers in lower-earning occupations. For example, among the 

most exposed occupations reported in Appendix Table D1, some with high performance requirements, 

such as Electrical Engineers and Airline Pilots, are in the top occupational earnings decile, and several 

others are in the top half of the distribution. In contrast, several of the most exposed occupations with low 

AI-related job performance requirements, such as Proofreaders, Billing and Bookkeeping Clerks, and 



Municipal Clerks, are found among those in the lower-middle portion of the occupational earnings 

distribution. 

As discussed extensively in the ERP, workers and firms make decisions about whether and how they 

adopt new technologies based on numerous trade-offs between adoption costs and potential benefits. 

Figure 4 can be helpfully considered in this context. Potential benefits from AI come from its ability to 

assist with or perform specific tasks, and AI-exposed workers are the ones who currently perform these 

tasks. AI-related performance requirements are plausibly a measure of the cost of adopting AI to an extent 

sufficient to fully or mostly automate the task as it is now performed. Thus, to the extent that AI may be 

able to substitute for employment in jobs with lower performance requirements, such workers may be 

more vulnerable to substitution or displacement through automation. Conversely, workers with high job 

performance requirements may be more likely to use AI as a complementary input if full AI-based 

automation is too costly or difficult to achieve. If these relationships hold, then a pattern of AI 

substituting for human employment in middle-class occupations—while complementing higher-paying 

occupations—could meaningfully increase aggregate income inequality. 

Some external evidence has begun to support the possibility that AI could impact income inequality in 

this way. For example, a recent survey of business executives by the Federal Reserve Bank of Dallas 

(2024) suggests that while most firms adopting AI do not anticipate a change in their need for workers, or 

for workers of different skill levels, pluralities of those that do anticipate changes plan to reduce their 

employment of low- and middle-skilled positions and increase their employment of high-skilled positions. 

Most firms adopting AI cite increased productivity as a benefit that they expect to experience as a result 

of AI adoption. 

However, the pattern implied by a simple cost-benefit interpretation Figure 4 is by no means guaranteed. 

For example, the greater savings from automating tasks of highly-paid workers could spur additional use 

of AI to substitute for workers in the upper deciles. Or, AI-led automation could lead workers in exposed 

occupations to perform more difficult and complex tasks than they do now, raising their jobs’ 

performance requirements and their productivity without displacing them. Workers might also change 

their focus entirely, increasing their focus on tasks that AI is not well-suited to perform. Finally, 

government policies could meaningfully alter AI’s impacts across the earnings distribution, either through 

regulations that impact how AI is used, or through broader fiscal policies. 

Differences in Exposure by Gender, Race/Ethnicity, and Education 
It is well established that while the gender composition of many occupations has become more equal over 

time, many occupations continue to have highly gendered employment patterns. For example, elementary 

https://www.dallasfed.org/research/surveys/tbos/2024/2404q


and middle school teachers are 79 percent female while construction supervisors are 95 percent male 

(Bureau of Labor Statistics 2024). Similarly, the racial and ethnic composition of occupations varies 

substantially across the workforce. As such, one might expect that AI may have differential effects by 

gender and ethnicity, as well as differential effects across the educational distribution. 

 

Figure 5 examines AI exposure across major demographic groups, including sex, race/ethnicity, and 

education. Although substantial fractions of workers from all major demographic groups are exposed AI, 

this analysis does suggest some demographic differences in the composition of the AI-exposed labor 

force. Women are slightly more likely to have high AI exposure in their jobs than men, and Asian 

workers are also somewhat more likely to be employed in an AI-exposed occupation. However, the most 

substantial differences in exposure occur across the education distribution—workers with higher levels of 

education are considerably more likely to have high exposure to AI. 

Additionally, the demographic patterns observed among all AI-exposed workers are somewhat different 

than those observed among the subset of AI-exposed workers whose jobs’ lower performance 

https://www.bls.gov/cps/cpsaat11.htm


requirements may make them more vulnerable to AI. Workers in these jobs are disproportionately likely 

to have only a high school diploma, or to have some college but less than a Bachelor’s degree. 

Conversely, workers with four-year degrees tend to be employed in jobs with higher performance 

requirements, making them potentially less at risk of displacement, and potentially more likely to have AI 

as a complementary input. Also of note, women are substantially more likely than men to be employed in 

high AI-exposed occupations with low performance requirements. This suggests that women may have a 

higher risk of displacement from AI. 

Differences in Exposure by Age 
Another dimension along which differences in AI exposure may be particularly important is worker age. 

Workers often make costly investments in education and other forms of human capital when young, in 

anticipation that those investments will pay off in the long run. As workers age, the time frame over 

which they can recoup these costly investments shortens. So, while the youngest workers may still be able 

to adapt their educational and occupational choices to reflect expectations about AI, older workers may 

not find it worthwhile to adapt, even in cases where they are negatively impacted. 

 



Figure 6 evaluates AI exposure over the age distribution. AI exposure is lowest among workers under 25 

years of age. This may be, in part, driven by young workers who work in certain low-exposure service 

occupations or industries temporarily before moving on to other employment opportunities. Among 

workers over the age of 25, rates of high AI exposure are comparatively flat. However, rates of high 

exposure with low AI-related performance requirements are increasing with age. One contributor to this 

pattern may be higher rates of college completion among younger workers (U.S. Census Bureau 2023), 

since workers with at least a Bachelor’s degree are more likely to work in jobs with high performance 

requirements. 

Higher job vulnerability among older workers may be of particular concern if job displacement has more 

negative impacts on older workers. Earlier evidence from the United States has suggested that the 

negative effects of job displacement vary only modestly by age (Jacobson, Lalonde, and Sullivan 1993), 

but more recent evidence from Europe suggests that older workers are particularly negatively affected by 

job loss, including job displacement that is linked to automation (Deelen, de Graaf-Zijl, and van den 

Berge 2018; Bessen et al. 2023). Research in the tax literature also suggests that the extent of differential 

effects on new versus existing workers determines whether automation technologies should be taxed 

above and beyond other forms of capital (Guerrreiro, Rebelo, and Teles 2022). 

Geographic Patterns 
Labor markets are often localized, and so economic forces that impact particular labor markets can also 

have geographically-concentrated impacts. For example, evidence has shown that previous job 

displacement resulting from trade liberalization spilled over into local economies, and that it has had 

persistent effects in those places (Autor, Dorn, and Hanson 2013;  2021). Conversely, research suggests 

that the rise of economically prosperous technology clusters is linked to the positive spillovers that being 

close to other inventors can provide (Moretti 2021). As such, the geographic distribution of AI exposure 

may have implications for its aggregate impacts. An understanding of the geography of AI exposure could 

help to target negatively affected workers through place-based policies or other means. 

https://www.census.gov/data/tables/2022/demo/educational-attainment/cps-detailed-tables.html
https://www.jstor.org/stable/2117574?seq=1
https://link.springer.com/article/10.1186/s40172-018-0063-x
https://link.springer.com/article/10.1186/s40172-018-0063-x
https://direct.mit.edu/rest/article/doi/10.1162/rest_a_01284/114750/What-Happens-to-Workers-at-Firms-that-Automate
https://academic.oup.com/restud/article-abstract/89/1/279/6219962
https://www.aeaweb.org/articles?id=10.1257/aer.103.6.2121
https://www.nber.org/papers/w29401
https://www.aeaweb.org/articles?id=10.1257/aer.20191277


 

Across broad geographic regions of the country, there is relatively little heterogeneity in exposure to AI. 

As Table 3 shows, the Census division with the largest share of AI-exposed employment has only a 2 

percentage point higher share of such employment than the lowest-ranking region. And, the distribution 

of AI-exposed employment with low performance requirements is similarly compressed. 

 

Table 3. Rank of Census Divisions by Percent of AI-Exposed Employment

Rank State
Percent of AI-exposed 

employment

Percent of AI-exposed 
employment with low 

performance requirements

Rank by AI exposure with 
low performance 

requirements
1 Pacific 20.5% 10.1% 8
2 Mountain 20.2% 10.5% 4
3 Middle Atlantic 20.0% 10.4% 6
4 New England 20.0% 9.4% 9
5 South Atlantic 19.9% 10.3% 7
6 West South Central 19.4% 11.2% 2
7 West North Central 19.3% 11.3% 1
8 East North Central 19.1% 10.5% 5
9 East South Central 18.5% 11.0% 3

Council of Economic Advisers
Sources: American Community Survey; Department of Labor; Pew Research Center; CEA calculations.
Note: Analysis uses full-time, full-year workers age 16 plus. Performance requirements are captured using the O*NET data measuring degree of difficulty or 
complexity at which a high AI-exposed work activity is performed within an occupation. Low indicates an average degree of difficulty below the median. 
As of May 8, 2024 at 6:00pm



 

 

Nonetheless, when analyzed with finer geographic precision, there is substantial variation in exposure to 

AI across places. Figures 7 and 8 provides detailed maps at the PUMA level, the finest geographic level 

for which detailed occupation data are available in the American Community Survey. The first panel plots 

quartiles based on any AI-exposed employment, while the second panel shows quartiles based on AI-

exposed employment with low performance requirements. While these maps suggest some regional 

patterns, there is no clear positive geographic correlation between overall exposure and potential 

vulnerability. In particular, many rural areas of the country do not rank especially high in terms of overall 

AI exposure, but do rank high in employing the occupations with high exposure and low AI-related 

performance requirements that are potentially most vulnerable. As such, rural areas could on average be 

more susceptible to negative spillover effects associated with increased AI adoption. 



 

Figure 9 confirms this broad pattern by plotting average rates of AI exposure across deciles of local area 

population density. Average rates of exposure are substantial in both the most rural areas (the lowest 

deciles) and the most urbanized areas (the highest deciles). Yet, overall AI exposure is highest in the 

densest areas. This echoes the findings of Felten, Raj, and Seamans (2021), who have previously 

observed a similar pattern. On the other hand, employment of potentially-vulnerable workers (highly AI-

exposed and with low AI-related performance requirements) is negatively associated with local 

population density. The weakness of these associations suggests that population density on its own may 

be only modestly beneficial as a metric in identifying potentially affected workers. 

In Appendix Tables D3 and D4, CEA has provided lists of the top 25 geographic regions (PUMAs) with 

the highest rates of employment in AI-exposed occupations, and the top 25 geographic areas with the 

highest rates of vulnerable employment. Notably, there is little overlap between these two lists; only a 

single area that ranks as having among the highest rates of AI exposure also ranks similarly high-ranking 

rates of exposure with low performance requirements. In fact, some regions with among the highest AI 

exposure—such as portions of Silicon Valley—have among the lowest rates of AI-related performance 

requirements in the country. This suggests that the places that may be most at risk of substantial AI-

https://onlinelibrary.wiley.com/doi/full/10.1002/smj.3286


related displacement could be quite different from the places where AI is simply being widely used. 

Additionally, while a majority of the top regions in terms of AI-exposed employment are located in some 

of the nation’s largest metropolitan areas, regions with high rates of AI-exposed employment with low 

performance requirements are often in smaller metros or outside of metropolitan areas entirely. 

Taken collectively, this analysis suggests that both the positive and negative effects of AI on labor 

markets may be geographically clustered. However, it is likely that they will often not be clustered in the 

same places. Additional analyses and measure that can further distinguish between AI-vulnerable workers 

and merely AI-exposed workers may be especially useful in considering geographically-targeted 

assistance or other place-based policies. 

Unionization and AI Exposure 
Technology adoption is often characterized as a firm-level decision, but workers can play a meaningful 

role in determining how technologies like AI are used. There are also many ways in which workers’ 

voices and insights can be expressed. However, the collective bargaining power of labor unions has 

traditionally made them a particularly important avenue for empowering workers. Unions have already 

had an impact on AI adoption, as workers have secured protections related to the use of AI in several 

recent union contracts, including those of screen writers and actors (WGAW 2023; SAG-AFTRA 2023). 

More generally, the knowledge that workers provide about work processes could help to improve AI 

implementation (Kochan et al. 2023). 

https://www.wga.org/contracts/contracts/mba/summary-of-the-2023-wga-mba
https://www.sagaftra.org/files/sa_documents/TV-Theatrical_23_Summary_Agreement_Final.pdf
https://mitsloan.mit.edu/centers-initiatives/institute-work-and-employment-research/bringing-worker-voice-generative-ai


 

Only 10 percent of wage and salary workers are union members (Bureau of Labor Statistics 2024), and 

CEA finds that AI-exposed workers are even less unionized: only 9.0 percent of such workers are 

members of a union. However, in assessing the potential role of unions, it may be useful to consider how 

the relative unionization rate of AI-exposed workers varies across the characteristic groups. Figure 10 

plots the unionization rate of AI-exposed workers as a percentage of the rate for non-exposed workers 

within each occupational earning decile. The figure demonstrates that lower unionization rates for 

exposed workers hold across much of the earnings distribution: AI-exposed workers are substantially 

more likely than non-exposed workers to be unionized in only three earnings deciles. Additionally, it 

shows that potentially AI-vulnerable workers (highly AI-exposed workers with low performance 

requirements), who may be especially at risk to displacement, are not disproportionately likely to be 

union members. The percentage of workers who are vulnerable to AI and near the top of the earnings 

distribution is small, but these workers appear to particularly unlikely to be unionized. 

Unions will likely continue to play a valuable role in empowering workers and ensuring that AI adoption 

is beneficial to them. Yet, this analysis suggests that a relatively high proportion of workers who may be 

displaced are not currently represented by a union. This could change if unionization becomes 

https://www.bls.gov/news.release/union2.nr0.htm


increasingly attractive to workers who are concerned about the role that new technology plays in their 

work. However, the role that unions play in empowering workers may be meaningfully complemented by 

a broader approach that incentivizes firms to account for the benefits and costs of AI adoption to their 

labor force. 

Historical Analysis 
In assessing a framework that predicts potential future impacts of a new technology, it may be helpful to 

consider how that framework relates to the changes of the past. The analysis of the preceding subsection 

suggests that CEA’s measures are in part linked to prominent measures of occupational task content that 

economists have relied upon in the past. In this section of the report, CEA looks at a variety of historical 

and recent employment trends that can provide clues as to how or whether AI is already impacting labor 

markets, and also as to how workers and labor markets may adapt to increased adoption of AI. 

Collectively, these results provide some additional evidence that the subset of occupations with low AI-

related performance requirements identified by CEA may already be comparatively vulnerable. They also 

suggest some possible ways in which workers in different occupations may be adapting to technological 

change differently over time. 



Historical Employment Trends and Recent Comparison 

 

 

Figure 11 shows historic trends in annual employment growth among the three distinct occupational 

groups defined by CEA’s measure.10 Notably, employment growth of AI-exposed occupations with low 

performance requirements has been consistently slower than that of occupations with high performance 

requirements for nearly two decades, as well as of occupations which are not highly exposed to AI. In 

early periods, employment growth across these three groups was largely in parallel. They also responded 

similarly during the Great Recession and subsequent recovery. However, in more recent years, there has 

been some divergence in growth patterns across the three groups. The gap in employment group between 

the high- and low-performance requirement groups increased substantially in the latter portion of the last 

decade. And, employment in the non-exposed group declined more strongly and recovered more quickly 

 
10 To perform this analysis and subsequent ones in this section, occupational definitions needed to be encoded 
consistently over time. For this purpose, CEA used a time-consistent occupational crosswalk provided by IPUMS, 
based on the 2010 SOC classification. All analyses exclude occupations that did not appear in the 2022 ACS, 
because these occupations have not been not categorized in terms of their AI exposure. 



from the pandemic recession period, potentially reflecting differences in the working environments of AI-

exposed and less-exposed employment. Employment growth between 2021 and 2022 was again largely in 

parallel, although this finding is challenging to interpret in light of the ongoing pandemic recovery at that 

time. 

 



Although this historical analysis is insightful about long-run trends, it may not capture more immediate 

changes associated with the rapid rise of new AI systems, such as generative AI. To assess potential 

recent impacts of AI on employment growth, it is more useful to compare how recent changes in different 

groups compare to their long-run trends. For this purpose, CEA has turned to payroll employment data, as 

well as additional information from the Bureau of Labor Statistics that provides details on the relationship 

between occupation and industry patterns of employment. Although most industries employ a mix of 

highly AI-exposed and less-exposed workers, there are a handful of industries that employ high fractions 

of AI-exposed workers. A full list of these industries is included in Appendix D, and some are small, but 

notable examples include Legal Services, Oil and Gas Extraction, and Software Developers. Based on this 

information, Figure 12 compares employment growth in 2023 against long-run trends in growth for each 

industry from 2007 to 2019, and then plots this difference against the percentage of within-industry 

employment that is highly exposed to AI. The two panels of the figure separate out AI-exposed 

employment with high AI-related performance requirements, and AI-exposed employment with low AI-

related performance requirements. As the figure shows, many of the industries that disproportionately 

employ exposed workers are small. And, there is relatively little evidence that changes in employment 

growth rates are being driven by workers’ AI exposure as measured at the industry level. The relationship 

between changes in employment growth and employment of exposed workers with low performance 

requirements (the lower panel) is slightly negative. This is consistent with the more recent slowdown in 

employment growth among this occupational group. On the other hand, if new AI technologies were 

already causing substantial AI-driven substitution to take place, then the plotted relationship would likely 

be stronger. 

A likely reason that few employment effects are currently seen in relation to AI is that it is still too early 

in firms’ adoption process. Although many systems and processes may eventually be updated to take 

advantage of AI, firms may not yet have made these types of updates in all cases (McElheran et al. 2024; 

Babina et al. 2024). 

Occupational Transitions and Career Paths 
Another way in which workers may respond to the impacts of new technology is by changing jobs or 

occupations. For example, a worker who is displaced from an occupation whose employment is shrinking 

might seek employment in another occupation that is less prone to displacement. Or, in the case of AI, a 

worker whose tasks are automated by the technology could potentially switch to another occupation with 

higher performance requirements that AI cannot yet emulate. Since the human capital that workers use to 

perform their jobs is often task or occupation-specific (e.g., Gathmann and Schönberg 2010; Sullivan 

https://onlinelibrary.wiley.com/doi/full/10.1111/jems.12576
https://www.sciencedirect.com/science/article/pii/S0304405X2300185X
https://www.journals.uchicago.edu/doi/full/10.1086/649786
https://www.sciencedirect.com/science/article/abs/pii/S0927537109001286


2010), workers pay an implicit cost when they switch occupations. For this reason, occupational 

switching patterns reflect in part a supply response to patterns of increasing or declining demand.  

To evaluate job transitions among AI-exposed workers, CEA has conducted an analysis that takes 

advantage of the longitudinal structure of the Current Population Survey (CPS). In this survey, the same 

workers are observed in two adjacent years, and this permits measurement of the same worker’s 

employment characteristics—including occupation—at multiple points in time. From these data, CEA has 

constructed a one-year occupational transition matrix for each of the three main occupational categories 

defined by its measure. That is, for a worker is employed in a particular category in one year, this matrix 

provides the probability that the worker is employed in the same occupation the next year, in another 

occupation in the same category, in another category, or that they are not employed. 

 

Table 4 provides this transition rate information for workers who were observed in both 2022 and 2023. It 

also compares these transition probabilities to rates observed in the pre-pandemic period of 2015 to 2019. 

In all cases, the percentage point changes in transition rates are small. Nonetheless, some notable patterns 

emerge when comparing 2022-2023 to the preceding period. Regardless of their initial occupations, 

workers are increasingly likely to have transitioned to an AI-exposed job with high AI-related 

performance requirements, and decreasingly likely to have transitioned to an AI-exposed job with low AI-

related performance requirements. These patterns are consistent with possible changes in occupational 

demand. Additionally, workers who start out in a high AI-exposure, high performance-requirements job 

are increasingly likely to remain in the same occupation. Conversely, workers who are employed in low 

performance requirement jobs are increasingly likely to change occupations. Most of these switches are to 

occupations that are not exposed to AI, but an increasing proportion are also switching to AI-exposed jobs 

https://www.sciencedirect.com/science/article/abs/pii/S0927537109001286


with higher performance requirements. Overall, workers were less likely to transition out of employment 

in 2023, and this was particularly true of AI-exposed workers with high job performance requirements. 

This analysis is consistent with possible emergence of patterns of complementarity and substitution, but it 

is subject to several important data-related limitations. The first limitation is that it is based on self-

reported occupations from a survey. Previous research has suggested that self-reported occupations may 

be imprecise, and also that occupational misreporting may systematically overstate the proportion of 

higher-skilled employment (Fisher and Houseworth 2013). Similarly, imprecise occupational reporting 

could account for the relatively low rates of workers reporting the same occupation in two consecutive 

years. 

A second limitation of this analysis is that it only considers transitions over a one-year period of time. 

Career transitions may take place over longer periods, especially if workers need to obtain additional 

training or formal education in order to make them. Even though Federal administrative data collected 

from employers are increasingly used to assess differences in individuals’ earnings and employment 

trajectories (e.g., Haltiwanger, Hyatt, and McEntarfer 2018; Foote 2022; Conzelmann et al. 2023), there 

are currently no U.S. administrative data sources that collect information about individual workers’ 

occupations in a comprehensive way over multi-year periods. So, some forms of worker adaptation to AI 

will likely remain unobservable for now. 

Changes in Task Content Over Time 
One of the biggest challenges to making predictions about the labor market impacts of AI is accounting 

for the ways in which the tasks or activities performed by specific occupations might evolve. Occupations 

often change in meaningful ways as workers and firms adopt new technologies. Even in cases where 

automation is implemented, workers may not be displaced if they adjust the tasks they perform to 

increasingly emphasize other elements of the work. Similarly, workers in an occupation might benefit 

considerably if a new technology permits them to increase their output or capabilities. Thus, the specific 

nature of future adaptations to AI may determine who benefits from the technology and who does not. 

For example, CEA’s analysis finds that workers in the lower-middle portion of the earnings distribution 

are both most likely to be exposed to AI, and also most likely to have low AI-related performance 

requirements. This finding suggests that these workers could be particularly vulnerable to substitution and 

subsequent harm. However, CEA’s measure is based on performance requirements today, and there is no 

guarantee that low performance requirements today are predictive of an inability to adapt in the future. If 

workers and jobs adapt to the technology over time, then potential harms may never arise. In fact, other 

researchers have recently suggested that AI could be especially beneficial to the middle class, by allowing 

https://content.iospress.com/articles/journal-of-economic-and-social-measurement/jem00377
https://www.journals.uchicago.edu/doi/full/10.1086/694417
https://www.sciencedirect.com/science/article/abs/pii/S0272775722000425
https://onlinelibrary.wiley.com/doi/full/10.1002/pam.22553


them to perform work that was previously performed only by highly paid experts (Autor 2024). There is 

also some recent empirical evidence suggesting that the largest productivity gains from AI may go to 

workers who are not already performing at a high level. For example, when call center workers were 

given access to AI, the largest productivity gains were observed among the least experienced and least 

skilled workers (Brynjolfsson, Li, and Raymond 2023). If AI’s specific features make it feasible for many 

workers to complement their own knowledge and skill with AI, then evidence of those adaptations will 

likely be found in future measures of job performance requirements, reflecting greater difficulty and 

complexity of workers’ jobs. Yet, current performance requirements may not be predictive of future help 

or harm. 

CEA continues to follow the evolving research on how workers use AI, and it has not made specific 

predictions about how task content will change over time in the future. However, using additional data 

from O*NET, it is able to provide some limited evidence on how occupations have changed over time in 

the past, in particular with regard to AI-exposed activities. To conduct this analysis, CEA evaluated the 

underlying O*NET Work Activity scores for each year going back to 2007.11 After linking these scores to 

a time-consistent definition of occupations,12 CEA researchers rescaled the work activity scores for each 

occupation in each year, using the methodology described in Section 2, but in all years transforming the 

data using means and standard deviations from the base year of 2007. Thus, CEA’s measure reports how 

many standard deviations more or less exposed an occupation has become to AI over time, and how much 

higher or lower its performance requirements have become, relative to the distribution of the economy in 

2007.13 And, using this information, CEA can measure several things. First, it can provide an estimate of 

how much exposure and performance requirements in the aggregate economy have changed over time. 

Second, it can assess the extent to which these changes result from within-occupation changes in tasks as 

opposed to changes in occupation-level employment. Finally, it can examine how different occupational 

groups may have evolved differently in recent years. Changes in job performance requirements are of 

particular interest in this context: they reflect changes in how complex and difficult are the tasks that 

 
11 In each year except 2022, CEA uses the last O*NET release that was made available in that year. In 2022, CEA 
uses O*NET release 28.0, released in August 2023, for consistency with previous analyses. Work Activity scores 
are not updated for each occupation in every year, so each occupation’s scores represent the most recent information 
available at that time. Years prior to 2007 were dropped from the analysis; in those years, Work Activity scores for 
numerous occupations were still recorded using legacy analyst data that predates the contemporary O*NET data 
collection program.  
12 Since occupational categorizations changed multiple times over the period, CEA first linked O*NET occupation 
information in each year to the relevant SOC occupational encoding for that year, using published crosswalks from 
Census and BLS. It then mapped those occupations to a longitudinally-consistent occupation encoding provided by 
IPUMS, based on the 2010 SOC classification. 
13 CEA has not adjusted its underlying measure of AI-exposed work activities to reflect changes in AI’s capabilities 
over time. So, this time varying measure indicates hypothetical exposure to AI’s current and expected future 
capabilities, not to its actual capabilities in the past. 

https://www.nber.org/papers/w32140
https://www.nber.org/papers/w31161


workers are performing, and therefore they may reflect the effects of complementary adoption of new 

technologies over time. 

 



The three panels of Figure 13 show the results of this analysis across the overall economy. Taken 

together, the analysis of the three panels suggest that meaningful within-occupational shifts have 

occurred, but that they likely have not been in response to AI specifically. Instead, changes in 

performance requirements over time appear to reflect a more general pattern of upskilling of employment 

in the economy.14 

Panel A plots average AI exposure by year, relative to the initial distribution of 2007. Exposure to AI—as 

measured by the importance workers have placed on activities corresponding to its present and expected 

future capabilities—has increased in recent years. However, even though the trend line has noticeably 

shifted since 2016, the magnitude of the change in aggregate AI exposure is quite small. In the second 

series of Panel A, CEA applies 2007 hours weights to each occupation. This additional restriction ensures 

that the percentage of employment in each occupation remains fixed over time. So, the second series in 

Panel A plots the aggregate changes in the economy that have resulted from within-occupation changes in 

AI exposure, rather than changes in employment composition across occupations. The 2007-weighted 

series confirms that not only has aggregate AI in the economy been relatively stable, but that shifts in the 

occupational structure over time have done relatively little to affect its path. 

In Panel B, CEA plots the change in average performance requirements by year, comparing those for 

highly AI-exposed activities (as used throughout and identified in Appendix Table A1) to those for all 

other activities. In contrast to AI exposure, AI-related performance requirements have increased 

substantially since 2007. The average worker in 2022 has AI-related performance requirements that 

would have been nearly 0.3 standard deviations above the mean in 2007. However, performance 

requirements have also increased by a similar magnitude among all other activities measured. This result, 

in particular, suggests that upskilling has occurred broadly throughout the economy, and that upskilling is 

likely not in response to AI technology specifically. 

Finally, Panel C compares this change in AI-related performance requirements to the same series, with 

2007 hours weights applied. As in Panel A, the fixed hours weight series is intended to reflect only 

within-occupation changes in performance requirements, while the baseline series also reflects the impact 

of compositional changes over time. This analysis implies that about 80 percent of the increase in AI-

related performance requirements from 2007 to 2022 was attributable to within-occupation changes in 

occupational content, rather than to shifts in employment across occupations. This result confirms that 

 
14 CEA uses the term upskilling in this context in reference to increases in job performance requirements over time. 
O*NET also contains a separate measure of occupational content denoted as Skill, which CEA has not analyzed. 



individual occupations have undergone considerable upskilling over time, and it also suggests that 

significant upskilling of the economy may not require widespread occupational transitions to occur. 

 

In Figure 14, CEA plots the distribution of cumulative changes from 2007 to 2022 in both AI exposure 

and AI-related performance requirements for each of the three occupational categories identified. This 

demonstrates several noteworthy differences in occupational changes among the three groups, which may 

reflect occupational adaptations to previous computing technologies, or to existing AI implementations. 

In particular, these results suggest that workers who are highly exposed to AI, but who have low AI-

related job performance requirements may be vulnerable precisely because their exposure has increased, 

but the complexity and difficulty of their jobs has not. These results should not be interpreted to suggest 

that any one occupation or set of occupations cannot or will not adapt to future technological changes. 

However, they do suggest that the vulnerability of the high-exposure, low-performance requirements 

occupations that CEA identifies may be increased by their lack of previous adaptation over time. 

As previously shown in Panel A of Figure 13, AI exposure in the overall economy did not increase much 

over the period, despite a slight uptick in recent years. However, as Figure 14 shows, the finding of little 

change is generally not true of the occupations that CEA classifies as currently highly AI-exposed. The 

median worker in these occupations in 2022 has exposure that is roughly 0.2 standard deviations higher 

than a worker in the same occupation in 2007, implying that AI-exposed activities have gotten more 



relatively important to these jobs over time. In contrast, the majority of workers in non-exposed 

occupations saw their AI exposure decline. 

Regarding AI-related performance requirements, the largest increases have, perhaps surprisingly, often 

been among workers who are not exposed to AI. This could reflect underlying technological forces, such 

as the ability of workers to use computers to perform more complex tasks that might not be particularly 

central to their jobs. However, the distribution of changes among this category of workers is quite wide, 

making this result hard to interpret. What is clearer is that there is a sizeable difference in the extent to the 

two categories of AI-exposed workers have changed over time. The complexity and difficulty of many 

AI-exposed occupations with low performance requirements have changed little since 2007, and this is 

reflected in the near zero change for the median worker in that category. On the other hand, the median 

worker in an AI-exposed job with high AI-related performance requirements has seen those requirements 

increase over time. 

As with the other time-series analyses that CEA has performed, there are important limitations to the 

analysis. Notably, O*NET does not update its estimates of each occupation’s activity scores in each year, 

so although this analysis uses the most recent information available in each year, these measures may 

considerably lag underlying occupation-level changes. Additionally, the need to use a time-consistent 

occupational definition limits the ability to look at more finely grained patterns of occupational birth and 

death that may suggest changes. And, changes to task content could be mismeasured if analysts or 

respondents simply interpret O*NET’s quantitative scales differently over time. Nonetheless, this analysis 

supports the notion that substantial changes within occupations have occurred in recent years, and that 

these patterns have been notably different for the occupations that CEA identifies as potentially AI-

vulnerable. 

Of course, all these patterns could change over time, and increased upskilling of vulnerable workers could 

mitigate the possibility of displacement or other harms. However, the occupations that CEA identifies as 

potentially AI-vulnerable show less evidence of upskilling despite the fact that they are already 

experiencing slower employment growth and other signs of reduced demand. CEA cannot observe 

whether these signs of declining demand are a result of labor substitution that is already taking place. 

However, if these occupations are particularly resistant to complementary integration of new 

technologies, then AI is especially likely to negatively impact workers in these occupations. 

Conclusions 
The potential implications of AI on workers and labor markets are large, but highly uncertain. In this 

report, CEA has taken an explicitly data-driven approach to consider who might be most impacted by AI, 



and to evaluate reasons why those impacts might be more or less positive for different groups of workers. 

Carefully examining the data has benefits: it ensures that any predictions are grounded in evidence to the 

extent possible. It also helps to identify the specific ways in which existing data may be insufficient to 

answer the questions being posed. The value in the CEA’s framework derives, in large part, from its 

ability to provide a concise and interpretable lens on those underlying data, and on new data as they 

become available.  

This approach is not without limitations or trade-offs. Many forms of AI technology are very new, and in 

numerous cases there is simply not enough data to evaluate how different groups of workers will be 

affected by the technology. All analyses of potential labor market impacts from AI should be interpreted 

cautiously, and CEA’s is no different in this regard. As adoption of AI increases over time, CEA expects 

that they and others will continue to revisit these questions, and its predictions may well be proven wrong. 

Nonetheless, the analyses contained in this report provide several new pieces of evidence that support the 

potential implications of its underlying framework. In particular, these analyses support an interpretation 

that a subset of AI-exposed workers are particularly vulnerable to potential negative impacts from AI and 

that these workers are most commonly found in the lower-middle portion of the earnings distribution. 

These AI-vulnerable workers may be identified by their occupations and the types of work that they do. 

Policies that seek to provide targeted assistance or otherwise address vulnerable workers may benefit 

from taking occupational information into account. However, there are also notable demographic and 

geographic patterns of exposure, and these may influence the overall policy response as well. 

AI adoption has both many potential benefits and also a potential for harm. The potential benefits to 

workers could be many, including higher productivity leading to higher wages, more time spent working 

on the interesting and enjoyable parts of their jobs, and other improvements to working conditions. The 

harms to workers may include some that are associated with declining demand—such as reduced earnings 

or job displacement—but also many others. For example, AI could be harmful if it is used in ways that 

reduce workers’ privacy or autonomy, undermine their rights, or that embed or enable discrimination. The 

Biden-Harris Administration has taken a thorough, whole of government approach to ensuring safe and 

responsible AI adoption. Its actions to support workers are consistent with that approach, including 

numerous actions outlined in Executive Order 14110 (White House 2023). Guidance from the Department 

of Labor will help to ensure that workers are treated fairly, employment decisions are made responsibly, 

and working conditions are upheld (Department of Labor 2024). The Labor Department also continues to 

review the government’s labor market assistance programs, to ensure that they are prepared for any new 

demands brought about by AI. And, both the analysis of this report and the broader economic framework 

https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://www.dol.gov/general/AI-Principles


discussed in the ERP will continue to inform and guide the Administration as it considers how best to 

support workers. 

Changes to the labor market over time are an inevitable and necessary feature of a dynamic economy. 

Jobs, occupations, and workers will adapt to accommodate AI, as they have done for numerous 

technologies over time. However, thoughtful policies and appropriate regulations can help ensure that 

these changes are broadly beneficial and not unnecessarily disruptive or harmful to workers. CEA will 

continue to analyze new developments in both data and research to help ensure that these policies are 

appropriately designed and effectively implemented. 
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Appendix A: Detailed Measure Construction 
CEA’s measures of AI exposure and AI-related performance requirements are based on an analysis of Work 

Activity ratings in O*NET. Of 41 work activities, 16 have been designated as having high AI exposure. 

The full set of exposed and non-exposed activities is reported in Appendix Table A1. O*NET reports this 

information at a custom occupational classification that is closely aligned to the Standard Occupational 

Classification (SOC) system. O*NET data are periodically updated, and CEA has relied on version 28.0 

for its primary analysis, released in August 2023. 



 

Table A1. List of AI Exposed and All Other Work Activities
Panel A. AI Exposed Work Activities

Activity ID Activity Name
4.A.1.a.1 Getting Information
4.A.1.a.2 Monitoring Processes, Materials, or Surroundings
4.A.2.a.2 Processing Information
4.A.2.a.3 Evaluating Information to Determine Compliance with Standards
4.A.2.a.4 Analyzing Data or Information
4.A.2.b.1 Making Decisions and Solving Problems
4.A.2.b.2 Thinking Creatively
4.A.2.b.5 Scheduling Work and Activities
4.A.3.a.3 Controlling Machines and Processes
4.A.3.a.4 Operating Vehicles, Mechanized Devices, or Equipment
4.A.3.b.1 Working with Computers
4.A.3.b.2 Drafting, Laying Out, and Specifying Technical Devices, Parts, and Equipment
4.A.3.b.6 Documenting/Recording Information
4.A.4.a.8 Performing for or Working Directly with the Public
4.A.4.c.1 Performing Administrative Activities
4.A.4.c.3 Monitoring and Controlling Resources

Panel B. All Other Work Activities
Activity ID Activity Name
4.A.1.b.1 Identifying Objects, Actions, and Events
4.A.1.b.2 Inspecting Equipment, Structures, or Materials
4.A.1.b.3 Estimating the Quantifiable Characteristics of Products, Events, or Information
4.A.2.a.1 Judging the Qualities of Objects, Services, or People
4.A.2.b.3 Updating and Using Relevant Knowledge
4.A.2.b.4 Developing Objectives and Strategies
4.A.2.b.6 Organizing, Planning, and Prioritizing Work
4.A.3.a.1 Performing General Physical Activities
4.A.3.a.2 Handling and Moving Objects
4.A.3.b.4 Repairing and Maintaining Mechanical Equipment
4.A.3.b.5 Repairing and Maintaining Electronic Equipment
4.A.4.a.1 Interpreting the Meaning of Information for Others
4.A.4.a.2 Communicating with Supervisors, Peers, or Subordinates
4.A.4.a.3 Communicating with People Outside the Organization
4.A.4.a.4 Establishing and Maintaining Interpersonal Relationships
4.A.4.a.5 Assisting and Caring for Others
4.A.4.a.6 Selling or Influencing Others
4.A.4.a.7 Resolving Conflicts and Negotiating with Others
4.A.4.b.1 Coordinating the Work and Activities of Others
4.A.4.b.2 Developing and Building Teams
4.A.4.b.3 Training and Teaching Others
4.A.4.b.4 Guiding, Directing, and Motivating Subordinates
4.A.4.b.5 Coaching and Developing Others
4.A.4.b.6 Providing Consultation and Advice to Others
4.A.4.c.2 Staffing Organizational Units

Council of Economic Advisers
Sources: Department of Labor; Kochhar (2023); CEA calculations.
As of May 8, 2024 at 6:00pm



For formal exposition, let 𝔸𝔸 denote the set of work activities are AI-exposed, and 𝔸𝔸𝐶𝐶 denote the set of all 

other work activities. And, let 𝐼𝐼𝐼𝐼𝑝𝑝𝑖𝑖𝑖𝑖 be the reported importance of work activity 𝑖𝑖 to occupation 𝑜𝑜 in 

O*NET. CEA standardizes all reported activity importance scores across occupations to account for 

distributional differences across activities, and to ensure that all work activities are weighted equally in the 

subsequent analysis. This normalized measure is expressed as 𝑧𝑧(𝐼𝐼𝐼𝐼𝑝𝑝𝑖𝑖𝑖𝑖), and the means and standard 

deviations used to construct it come from the distribution of reported importance scores across all 

occupations in O*NET, with occupations weighted by aggregate hours of work among full-time, full-year 

workers in the 2022 ACS. 

Using the above notation, CEA’s exposure score for occupation 𝑜𝑜 is the simply difference in the average 

normalized importance of AI-exposed activities and all other activities: 

𝐸𝐸𝑥𝑥𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 =
1
‖𝔸𝔸‖

�𝑧𝑧(𝐼𝐼𝐼𝐼𝑝𝑝𝑖𝑖𝑖𝑖)
𝑖𝑖∈𝔸𝔸

−
1
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� 𝑧𝑧(𝐼𝐼𝐼𝐼𝑝𝑝𝑖𝑖𝑖𝑖)
𝑖𝑖∈𝔸𝔸𝐶𝐶 

 

This measure yields an intuitive interpretation. An exposure score of 0 corresponds to an occupation in 

which AI-exposed activities are, on average, equally important to all other activities. A positive score 

implies that AI-exposed work activities are, on average, more important to performance of the occupation 

than other activities, while a negative score implies that they are less important. And, the value of 

𝐸𝐸𝑥𝑥𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 itself also has a specific interpretation: it reports how many standard deviations more (or less) 

important to the performance of an occupation are the AI-exposed activities, on average. 

CEA’s measure of AI-related job performance requirements uses information from a separate scale in 

O*NET, which reports the level of performance of each work activity that is required to perform the overall 

occupation. As described in Peterson et al. (1995), this scale is intended to capture the degree of difficulty 

or complexity with which activities are performed in each occupation. Formally, if 𝐿𝐿𝑝𝑝𝑣𝑣𝑖𝑖𝑖𝑖 is the reported 

level of performance of a given work activity that is needed to work at a given occupation, and 𝑧𝑧(𝐿𝐿𝑝𝑝𝑣𝑣𝑖𝑖𝑖𝑖) is 

the weighted standardized version of this information, then CEA’s measure of an occupation’s AI-related 

performance requirements is the average of this normalized measure among AI-exposed activities:  

𝑃𝑃𝑝𝑝𝑝𝑝𝑃𝑃𝑜𝑜𝑝𝑝𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑃𝑃𝑝𝑝𝑃𝑃𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝐼𝐼𝑝𝑝𝑃𝑃𝑃𝑃𝑝𝑝𝑖𝑖 =  
1
‖𝔸𝔸‖

�𝑧𝑧(𝐿𝐿𝑝𝑝𝑣𝑣𝑖𝑖𝑖𝑖)
𝑖𝑖∈𝔸𝔸

 

As before, this measure has an intuitive interpretation: it indicates how many standard deviations more 

difficult or complex an occupation’s performance requirements are for AI-exposed activities in comparison 

to the hours-weighted mean among the overall employed population. 

https://www.onetcenter.org/dl_files/Prototype_Vol1.pdf


For both the measures of AI exposure and of AI-related job performance requirements, CEA defines 

threshold levels, so that the full set of occupations can be neatly divided into three groups: AI-exposed 

with high AI-related performance requirements, AI-exposed with low AI-related performance 

requirements, and not highly AI-exposed. Much of the analysis in this report is based on these three 

groups; in some cases, AI-exposed workers with high and low performance requirements are analyzed 

together. For AI exposure, the threshold exposure score for delineating high AI exposure is based on the 

75th percentile of occupational exposure, unweighted by employment or hours; this is the same threshold 

used by Pew Research in its analysis (Kochhar 2023). For performance requirements, the threshold for 

delineating high/low AI-related performance requirements is the population median, weighted by 

aggregate hours in the 2022 American Community Survey (Ruggles et al. 2024). 

Appendix B: Relationship to Existing Measures of AI Exposure 
In recent years, researchers have developed a number of different measures of occupational AI exposure. 

Each measure shares a similar goal of identifying the workers who are most likely to be impacted by AI, 

whether positively through increased productivity and earnings, or negatively through substitution or 

displacement. And, in many cases, the measures rely on similar data sources to measure underlying 

occupational task content, especially the Department of Labor’s O*NET database. Given the extent 

uncertainty around AI’s future capabilities, it’s valuable to have multiple complementary frameworks for 

comparison. However, because these measures differ in the particulars of their approaches, there may be 

reason for concern that some core conclusions of any one analysis—including CEA’s—might be heavily 

dependent on the unique assumptions of that individual measure. 

 

CEA has conducted a comparative analysis of its measure of AI exposure with several other prominent 

measures in the recent literature. Occupation-level predictions of the extent of AI exposure were linked 

across measures so that basic patterns could be compared. Appendix Table B1 presents results from this 

analysis, in the form of a correlation table. A higher positive correlation demonstrates a stronger degree of 

https://www.pewresearch.org/social-trends/2023/07/26/which-u-s-workers-are-more-exposed-to-ai-on-their-jobs/
https://usa.ipums.org/usa/


association between CEA’s measure of AI exposure and the alternative measures shown.15 

Unsurprisingly, CEA’s measure is most correlated with the measure on which many of its basic 

assumptions are based: the measure of Kochhar (2023). However, it is also notable that all examined 

measures are positively correlated. 

In Appendix Figures B1 through B4, CEA has provided additional scatterplots that compare CEA’s 

estimated extent of occupational AI exposure by major occupational group to each alternative analyzed. 

These figures confirm the positive relationship, and also provide some context about the portions of the 

occupational distribution in which CEA’s measure and other measures may differ in part.  

Overall, this analysis suggests that many basic conclusions about AI exposure are unlikely to be sensitive 

to the particular measure used. Occupations that are considered highly exposed in one measure are 

generally also recognized as highly AI-exposed in others. However, since the alternative measures 

evaluated here do not assess AI-related performance requirements, or other particular measures of 

potential vulnerability, this analysis provides only limited support to CEA’s more specific predictions 

about the possibility of complementarity or substitution. 

 

 
15 In the case of Kochhar (2023), which also developed a binary indicator of occupational exposure, CEA has used 
the underlying methodology of that paper to produce the continuous indicator of exposure upon which its binary 
classification is based. All occupations for this analysis have been linked using the SOC 2018 classification, and are 
weighted based on 2022 employment as measured in the ACS. 

https://www.pewresearch.org/social-trends/2023/07/26/which-u-s-workers-are-more-exposed-to-ai-on-their-jobs/
https://www.pewresearch.org/social-trends/2023/07/26/which-u-s-workers-are-more-exposed-to-ai-on-their-jobs/


 

 



 

 

Appendix C: Alternative Threshold Analysis 
As outlined in Appendix A, CEA has constructed measures of occupational AI exposure, and of AI-

related job performance requirements that vary continuously across occupations. However, CEA also 

identifies thresholds for each measure, and it uses these thresholds to conduct much of its analysis. Above 

a threshold level of AI exposure, occupations are considered to be highly AI-exposed. And, below a 

threshold level of AI-related performance requirements, occupations are considered to have low 

performance requirements. Occupations that have both high AI exposure and low AI-related job 

performance requirements are identified as potentially vulnerable to negative impacts. 

The use of discrete thresholds to define occupational categories allows for intuitive comparisons across 

different demographic and socioeconomic groups that may be very useful. However, one concern with 

using any threshold-based measure such as CEA’s is that the overall interpretation of results may be 

highly sensitive to the chosen threshold. For this reason, CEA has conducted a set of sensitivity analysis 

in which it defines higher (more restrictive) and lower (less restrictive) thresholds for AI exposure and for 

AI-related job performance requirements. The analyses confirm that differences in economic and 

demographic patterns of exposed are not meaningfully affected by the choice of alternative thresholds 

within a sensible range. 



 

In Appendix Figure C1, CEA provides a sensitivity analysis of its earnings distribution results on overall 

AI exposure. The baseline threshold for AI-exposed occupations, based on the unweighted 75th percentile 

of occupations, is compared against a more restrictive threshold (90th percentile) and a less restrictive 

threshold (50th percentile). Regardless of the threshold chosen, the overall shape of exposure across the 

earnings distribution is little affected. The highest rates of occupational AI exposure are associated with 

occupations in the lower-middle portion of the earnings distribution. And, the share of employment that is 

AI-exposed increases over the upper half of the occupational earnings distribution, with relatively high 

exposure among workers in the top two deciles. 



 

In Appendix Figure C2, CEA provides a similar sensitivity analysis for AI-exposed employment with low 

performance requirements. This analysis also confirms the baseline implication that workers in the lower-

middle portion of the earnings distribution may be most vulnerable to AI. 



Appendix D: Additional Tables and Figures 

 

Table D1. Top 25 Most AI-Exposed Occupations

Rank Occupation AI exposure score

AI-related 
performance 

requirements score

Percentile of AI-
related performance 

requirements
1 Eligibility Interviewers, Government Programs 0.92 0.06 53
2 Title Examiners, Abstractors, and Searchers 0.82 0.06 53
3 Medical Transcriptionists 0.81 -0.73 18
4 Cartographers and Photogrammetrists 0.81 0.49 79
5 Judicial Law Clerks 0.80 -0.58 20
6 Tax Preparers 0.78 0.26 62
7 Biological Technicians 0.77 0.19 59
8 Electrical Engineers 0.75 1.35 100
9 Compliance Officers 0.74 0.36 67
10 Proofreaders and Copy Markers 0.73 -1.23 4
11 Architectural and Civil Drafters 0.73 0.16 57
12 Private Detectives and Investigators 0.73 0.40 69
13 Billing and Posting Clerks 0.71 -0.98 9
14 Commercial and Industrial Designers 0.71 0.02 49
15 Production, Planning, and Expediting Clerks 0.69 -0.24 33
16 Drilling and Boring Machine Tool Setters, Operators, and Tenders,   0.69 -0.21 38
17 Airline Pilots, Copilots, and Flight Engineers 0.68 0.69 89
18 Payroll and Timekeeping Clerks 0.63 -0.39 27
19 Nuclear Power Reactor Operators 0.63 0.61 85
20 Court, Municipal, and License Clerks 0.63 -0.42 26
21 Paralegals and Legal Assistants 0.63 0.17 57
22 Switchboard Operators, Including Answering Service 0.63 -1.06 8
23 Bookkeeping, Accounting, and Auditing Clerks 0.62 -0.26 32
24 Loan Interviewers and Clerks 0.61 0.26 62
25 Surveying and Mapping Technicians 0.58 -0.05 46

Council of Economic Advisers
Sources: American Community Survey; Department of Labor; Pew Research Center; CEA calculations.
Note: Occupations with an AI-related performance requirements score below the 50th percentile are classified as having low performance requirements. These are bolded in the last column of 
the table.
As of May 8, 2024 at 6:00pm.



 

 

Table D2. Top 25 Least AI-Exposed Occupations

Rank Occupation AI exposure score

AI-related 
performance 

requirements score

Percentile of AI-related 
performance 
requirements

1 Human Resources Managers -0.67 0.60 85
2 Bicycle Repairers -0.66 -0.55 21
3 Laundry and Dry-Cleaning Workers -0.64 -1.29 4
4 Clergy -0.62 -0.08 44
5 Demonstrators and Product Promoters -0.60 -1.12 6
6 Sales Managers -0.55 0.37 68
7 Exercise Trainers and Group Fitness Instructors -0.53 -0.67 19
8 Marketing Managers -0.53 -0.06 45
9 Food Preparation Workers -0.53 -0.46 24
10 Dancers -0.51 -1.79 1
11 Manicurists and Pedicurists -0.50 -1.77 1
12 Passenger Attendants -0.50 -1.64 1
13 Bartenders -0.50 -0.95 10
14 Training and Development Managers -0.50 0.58 84
15 Writers and Authors -0.50 -1.11 7
16 Laborers and Freight, Stock, and Material Movers, Hand -0.49 -1.19 5
17 First-Line Supervisors of Retail Sales Workers -0.48 -0.24 33
18 Education and Childcare Administrators, Preschool and Daycare -0.48 0.17 58
19 Cutters and Trimmers, Hand -0.47 -1.09 7
20 Door-to-Door Sales Workers, News and Street Vendors, and Related Workers -0.46 -1.17 5
21 Directors, Religious Activities and Education -0.46 0.24 61
22 Dishwashers -0.45 -0.16 40
23 Cashiers -0.45 -1.10 7
24 Dining Room and Cafeteria Attendants and Bartender Helpers -0.45 -0.87 11
25 Orderlies -0.44 -1.05 8

Council of Economic Advisers
Sources: American Community Survey; Department of Labor; Pew Research Center; CEA calculations.
Note: Occupations with an AI-related performance requirements score below the 50th percentile are classified as having low performance requirements. These are bolded in the last column of the table.
As of May 8, 2024 at 6:00pm.

Table D3. Top 25 Most AI-Exposed Public Use Microdata Areas

Rank State Public Use Microdata Area Metropolitan statistical area
1 California San Diego County (West Central)--San Diego City (Northwest/Del Mar Mesa) San Diego-Carlsbad, CA
2 District of Columbia District of Columbia (Central) Washington-Arlington-Alexandria, DC-VA-MD-WV
3 California Santa Clara County (Northwest)--Sunnyvale & San Jose (North) Cities San Jose-Sunnyvale-Santa Clara, CA
4 New Mexico Albuquerque City (Central) & Bernalillo County (North Valley) Albuquerque, NM
5 California Santa Clara County (North Central)--Milpitas & San Jose (Northeast) Cities San Jose-Sunnyvale-Santa Clara, CA
6 Virginia Arlington County (North) Washington-Arlington-Alexandria, DC-VA-MD-WV
7 Texas Dallas County (Northwest)--Irving (North), Coppell & Carrollton (Southwest) Cities Dallas-Fort Worth-Arlington, TX
8 California Santa Clara County (Northwest)--Mountain View, Palo Alto & Los Altos Cities San Jose-Sunnyvale-Santa Clara, CA
9 Virginia Fairfax County (North Central)--Vienna Town, Oakton & Fair Oaks (East) Washington-Arlington-Alexandria, DC-VA-MD-WV
10 California Santa Clara County (Northwest)--San Jose (Northwest) & Santa Clara Cities San Jose-Sunnyvale-Santa Clara, CA
11 Oregon Washington County (Central)--Hillsboro City Portland-Vancouver-Hillsboro, OR-WA
12 Florida Manatee County (South) North Port-Sarasota-Bradenton, FL
13 Maryland Anne Arundel County (Northwest)--Severn, Odenton, Crofton, Maryland City & Fort Meade Baltimore-Columbia-Towson, MD
14 Texas Austin City (South) Austin-Round Rock, TX
15 Alabama Huntsville City (Central & South) Huntsville, AL
16 California Alameda County (South Central)--Fremont City (East) San Francisco-Oakland-Hayward, CA
17 California Alameda County (North)--Berkeley & Albany Cities San Francisco-Oakland-Hayward, CA
18 California San Diego County (Central)--San Diego City (Central/Mira Mesa & University Heights) San Diego-Carlsbad, CA
19 District of Columbia District of Columbia (West) Washington-Arlington-Alexandria, DC-VA-MD-WV
20 Maryland Montgomery County (South)--Bethesda, Potomac & North Bethesda Washington-Arlington-Alexandria, DC-VA-MD-WV
21 Iowa Polk (Southwest) & Dallas (East) Counties--West Des Moines & Urbandale Cities Des Moines-West Des Moines, IA
22 North Carolina Wake County (West Central)--Cary Town Raleigh, NC
23 Ohio Columbus (Far Northeast), Gahanna & New Albany Cities Columbus, OH
24 Massachusetts Woburn, Melrose Cities, Saugus, Wakefield & Stoneham Towns Boston-Cambridge-Newton, MA-NH
25 Texas Houston City (West Central)--South of I-10 & Inside Loop I-610 Houston-The Woodlands-Sugar Land, TX

Council of Economic Advisers
Sources: American Community Survey; Department of Labor; Pew Research Center; CEA calculations.
Note: Public Use Microdata Areas (PUMAs) are defined as non-overlapping,statistical geographic areas that divide each state into areas with a population of at least contain 100,000. The corresponding metropolitan statistical area (MSA) is listed when there is a           
Analysis uses full-time, full-year workers age 16 plus. Performance requirements are captured using the O*NET data measuring degree of difficulty or complexity at which a high AI-exposed work activity is performed within an occupation. Low indicates an avera        
As of May 8, 2024 at 6:00pm.



 

Table D4. Top 25 AI-Exposed Public Use Microdata Areas with Low Performance Requirements

Rank State Public use microdata area Metropolitan  statistical area
1 Georgia Atlanta Regional Commission (Southwest)--Douglas County Atlanta-Sandy Springs-Roswell, GA
2 Florida Manatee County (South) North Port-Sarasota-Bradenton, FL
3 Texas Hidalgo County (North & West) McAllen-Edinburg-Mission, TX
4 Arkansas Southwest Arkansas Texarkana, TX-AR
5 Texas Dallas City (South Central)--North of I-20 & West of I-35E Dallas-Fort Worth-Arlington, TX
6 Florida Sumter (North) & Lake (North) Counties Orlando-Kissimmee-Sanford, FL
6 Florida Sumter (North) & Lake (North) Counties The Villages, FL
7 New Mexico San Juan County (Northeast)--Farmington, Bloomfield & Aztec Cities Farmington, NM
8 Texas Bexar County (South)--San Antonio City (Far South) San Antonio-New Braunfels, TX
9 Texas Deep East Texas COG (East) Beaumont-Port Arthur, TX
10 New Jersey Middlesex County (Northeast)--Carteret Borough New York-Newark-Jersey City, NY-NJ-PA
11 Missouri Platte County Kansas City, MO-KS
12 Texas El Paso County (Outside El Paso City)--Socorro & Horizon Cities El Paso, TX
13 Texas East Texas COG (Southwest)--Henderson & Anderson Counties
14 Georgia Atlanta Regional Commission (Central)--DeKalb County (East Central)--Redan Atlanta-Sandy Springs-Roswell, GA
15 Mississippi East Central Region--Neshoba, Scott, Leake, Jasper, Smith & Kemper Counties
16 Nebraska Southwest Nebraska
17 Missouri St. Francois, Washington, Perry & Ste. Genevieve Counties
18 California Stanislaus County (Southwest)--Ceres, Patterson & Newman Cities Modesto, CA
19 Iowa Sioux, Clay, Dickinson, O'Brien, Lyon, Emmet, Palo Alto & Osceola Counties
20 Arizona Maricopa County--Goodyear, Glendale (West) & Litchfield Park (Northwest) Cities Phoenix-Mesa-Scottsdale, AZ
21 Florida Miami-Dade County (North Central)--Miami Gardens City (North & West) Miami-Fort Lauderdale-West Palm Beach, FL
22 Kentucky Cumberland Valley Area Development District (South)
23 Arkansas St. Francis, Poinsett, Phillips, Cross, Lee & Monroe Counties Jonesboro, AR
24 California San Bernardino County (Southwest)--Colton, Loma Linda & Grand Terrace Cities Riverside-San Bernardino-Ontario, CA

Council of Economic Advisers
Sources: American Community Survey; Department of Labor; Pew Research Center; CEA calculations.
Note: Public Use Microdata Areas (PUMAs) are defined as non-overlapping,statistical geographic areas that divide each state into areas with a population of at least contain 100,000. The corresponding metropolitan statistical area (MSA) is listed whe             
population. Analysis uses full-time, full-year workers age 16 plus. Performance requirements are captured using the O*NET data measuring degree of difficulty or complexity at which a high AI-exposed work activity is performed within an occupation            
As of May 8, 2024 at 6:00pm.



 

Table D5. Top 25 Most AI-Exposed Industries

Rank Industry
Percent of AI-exposed 

employment

Percent of AI-exposed 
employment with low 

performance requirements
1 Legal Services 41% 23%
2 Web Search Portals, Libraries, Archives, and Other Information Services 40% 18%
3 Monetary Authorities-Central Bank 40% 16%
4 Communications Equipment Manufacturing 38% 16%
5 Credit Intermediation and Related Activities 38% 20%
6 Nondepository Credit Intermediation 38% 20%
6 Oil and Gas Extraction 37% 13%
7 Offices of Dentists 37% 26%
8 Computing Infrastructure Providers, Data Processing, Web Hosting, and Related Services 37% 18%
9 Software Publishers 37% 18%
10 Agencies, Brokerages, and Other Insurance Related Activities 37% 19%
11 Couriers and Express Delivery Services 36% 18%
12 Natural Gas Distribution 36% 13%
13 Computer Systems Design and Related Services 35% 14%
14 Pipeline Transportation 35% 13%
15 Commercial and Service Industry Machinery Manufacturing 35% 15%
16 Business Support Services 35% 22%
17 Couriers and Messengers 35% 17%
18 Medical and Diagnostic Laboratories 35% 15%
19 Electric Power Generation, Transmission and Distribution 34% 12%
20 Computer and Peripheral Equipment Manufacturing 34% 15%
21 Management, Scientific, and Technical Consulting Services 34% 14%
22 Lessors of Nonfinancial Intangible Assets (except Copyrighted Works) 34% 15%
23 Scientific Research and Development Services 34% 12%
24 Architectural, Engineering, and Related Services 34% 12%

25
Media Streaming Distribution Services, Social Networks, and Other Media Networks & 
Content Providers

33% 15%

Council of Economic Advisers
Sources: American Community Survey; Bureau of Labor Statistics; Department of Labor; Pew Research Center; CEA calculations.
Note: Analysis uses full-time, full-year workers age 16 plus. Performance requirements are captured using the O*NET data measuring degree of difficulty or complexity at which a high AI-exposed work 
activity is performed within an occupation. Low indicates an average degree of difficulty below the median. 
As of May 8, 2024 at 6:00pm.



 

 

Table D6. Top 25 AI-Exposed Industries with Low Performance Requirements

Rank State
Percent of AI-exposed 

employment

Percent of AI-exposed 
employment with low 

performance requirements
1 Offices of Dentists 37% 26%
2 Taxi and Limousine Service 33% 26%
3 Legal Services 41% 23%
4 Business Support Services 35% 22%
5 Technical and trade schools - Local government owned 30% 22%
6 Florists 24% 21%
7 Support Activities for Road Transportation 25% 21%
8 Fuel Dealers 28% 21%
9 Nondepository Credit Intermediation 38% 20%
10 Logging 20% 20%
11 Credit Intermediation and Related Activities 38% 20%
12 Drycleaning and Laundry Services 24% 19%
13 Technical and trade schools - State government owned 26% 19%
14 Other Transit and Ground Passenger Transportation 28% 19%
15 Other Textile Product Mills 24% 19%
16 Other Motor Vehicle Dealers 26% 19%
17 Death Care Services 23% 19%
18 Agencies, Brokerages, and Other Insurance Related Activities 37% 19%
19 Automobile Dealers 30% 19%
20 Computing Infrastructure Providers, Data Processing, Web Hosting, and Related Services 37% 18%
21 Web Search Portals, Libraries, Archives, and Other Information Services 40% 18%
22 Travel Arrangement and Reservation Services 32% 18%
23 Textile Furnishings Mills 26% 18%
24 School and Employee Bus Transportation 26% 18%
25 Couriers and Express Delivery Services 36% 18%

Council of Economic Advisers
Sources: American Community Survey; Bureau of Labor Statistics; Department of Labor; Pew Research Center; CEA calculations.
Note: Analysis uses full-time, full-year workers age 16 plus. Performance requirements are captured using the O*NET data measuring degree of difficulty or complexity at which a high AI-exposed work 
activity is performed within an occupation. Low indicates an average degree of difficulty below the median. 
As of May 8, 2024 at 6:00pm.
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